Abstract:
A patient transfer system is provided to move a patient between modalities. The system includes a deploying modality having a top surface configured to support the patient; a patient transfer support positionable on the top surface of the deploying modality, the patient transfer support also being configured for movement from the top surface of the deploying modality to a top surface of the receiving modality; a patient transfer support locating feature positionable to limit movement of the patient transfer support relative to the top surface of the receiving modality; and a keying feature positionable to engage at least one of a surface associated with the receiving modality or a surface of the patient transfer support, the keying feature being configured to inhibit movement of the patient transfer support in at least one direction relative to the top surface of the receiving modality. The patient transfer support locating feature limits the range of movement of the patient transfer support relative to the top surface of the receiving modality when the patient transfer support is moved from the top surface of the deploying modality to the top surface of the receiving modality.
Abstract:
A radiation therapy medical apparatus is disclosed. The medical apparatus includes a base, a cylindrical gantry peripherally and rotatably supported on the base, a first medical device assembly fixed to a first side of the gantry, a cylinder fixed to a second side of the gantry, the gantry disposed between the first medical device and the cylinder, a drag chain carrier comprising a carrier body surrounding the cylinder and defining an annular track, a drag chain, arranged within the annular track, wherein a first end of the drag chain is fixed to the cylinder and a second end is fixed to the cylindrical carrier body, and a cable supported by the drag chain, wherein a first end of the cable is electrically connected to the first medical device assembly.
Abstract:
In a method for guiding brachytherapy radiation treatment the patient is supported on a table and an MR magnet is brought into the treatment bunker through doors for imaging while the after-loader for the radiation source delivery is stored away in a storage location outside the RF shield. A safety system controls movement of the after-loader and the magnet. Images of the patient obtained while the patient is on the table are used to locate the applicator with respect to the lesion and organs-at-risk. The MR and X-ray compatible patient support table with MR coil integration includes a removable end-extension, which provides pelvic access for applicator insertion.
Abstract:
Apparatus for radiation therapy combines a patient table, an MRI and a radiation treatment apparatus mounted in a common treatment room with the MR magnet movable through a radiation shielded door to an imaging position. An initial MR image and an initial X-ray image is used to generate an RT program for the patient to be carried out in a plurality of separate treatment steps. Before carrying out the procedure, a registration step is performed using a phantom by which X-ray images are registered relative to MR images to generate a transformation algorithm required to align the MR images of the part of the patient relative to the X-ray images. Prior to each separate treatment step a current MR image of the part of the patient is obtained and the transformation algorithm data is used from the current MR image is used in guiding the RT treatment step.
Abstract:
A transport unit with a support system for transporting a patient from a first room in at least one second room is provided. The transport unit includes a positioning device which interacts with the support system such that the transportation of the patient from the first into the second room is able to be undertaken in a tilted and/or rolled position. Accordingly, internal organs of the patient remain in their previously assumed position during transportation of a patient.
Abstract:
An image-guided radiation treatment system includes a robotic positioning system and a tracking system that enables a radiation target to be imaged and aligned at one location and treated at another location by transferring positional data from the imaging system to the positioning system and the radiation treatment system.
Abstract:
The invention relates to a treatment room for a particle therapy system that has a treatment room isocenter, which can be set variably during treatment and forms an origin of a coordinate system, and a patient positioning apparatus for automatically positioning the patient with reference to the set treatment room isocenter.
Abstract:
An imaging device including a rotator having a hollow bore for a patient to move therein and thereout, the rotator being rotatable about a longitudinal axis, at least one linkage arm extending outwards from the rotator, and imaging apparatus mounted on the at least one linkage arm, the imaging apparatus including an imaging source that emits an imaging beam to an imaging detector aligned therewith along an imaging direction, the at least one linkage arm capable of full axial rotation about an imaging isocenter along an entire length of the patient, the isocenter lying along a longitudinal axis, and wherein the imaging apparatus is operative to rotate and to capture images of the patient along the imaging direction as the patient is positioned at an angle in a range of about 0-90° inclusive with respect to the longitudinal axis.
Abstract:
A medical device installation has a number of medical and/or treatment devices of different of different types disposed at a common installation, and a medical facility has a number of medical treatment and/or examination devices respectively disposed at separate locations. In the installation or the facility, a number of patient support mechanisms are respectively individually, stationarily allocated to the medical devices. A patient bed is movable among and is respectively couplable to each of the patient support mechanisms. For this purpose, each of the patient support mechanisms has an identical coupling device for the bed.
Abstract:
A patient setup and treatment verification system for radiation therapy having diagnostic imaging devices connected to a room containing a megavoltage radiation therapy machine. The diagnostic rooms and the megavoltage therapy room are connected to each other by openings in the shared secondary wall of the accelerator or through an anteroom to the megavoltage therapy room. Daily patient setup for routine and three-dimensional conformal radiation therapy and on-line treatment port verification with superimposed isodose are done with the patient on a diagnostic-imaging table. The patients are transferred from the diagnostic table to the treatment table without changing the verified treatment position. Sliding or rotating shield or maze walled anteroom are used for radiation protection. A patient setup with multiple diagnostic devices in separate chambers allows rapid turnover of patients in the megavoltage treatment room with patients spending much less time in the treatment room. When the diagnostic device is not in use with the megavoltage therapy machine for radiation therapy of patients in a radiation oncology department, it can be used as a routine diagnostic device for a diagnostic radiology department.