Abstract:
A region within a body of an imaging subject can be imaged to identify a tumor locus in a three dimensional coordinate system. An opening in the body of the imaging subject can be formed to provide an access location. Using an actuator, a surgical tool can be guided to traverse the access location to access the tumor locus, the surgical tool guided along a specified trajectory in the three dimensional coordinate system by the actuator and configured to resect and remove a first portion of the tumor within the tumor locus.
Abstract:
In a method for guiding brachytherapy radiation treatment the patient is supported on a table and an MR magnet is brought into the treatment bunker through doors for imaging while the after-loader for the radiation source delivery is stored away in a storage location outside the RF shield. A safety system controls movement of the after-loader and the magnet. Images of the patient obtained while the patient is on the table are used to locate the applicator with respect to the lesion and organs-at-risk. The MR and X-ray compatible patient support table with MR coil integration includes a removable end-extension, which provides pelvic access for applicator insertion.
Abstract:
In MR imaging in a suite of rooms including a diagnostic room and a second surgical room, the magnet includes a diagnostic table separable from a docking station of the magnet and the second room includes a second surgical table. An imaging control computer controls operation of the imaging system and a movement control computer controls operation of the magnet moving system and the patient support table. During imaging in the surgical room, the diagnostic table is separated and docked at a secondary docking station while an emulating computer system cooperate with the imaging control computer system by emulating outputs from the disconnected diagnostic table for controlling operation of the imaging system.
Abstract:
Apparatus for radiation therapy combines a patient table, an MRI and a radiation treatment apparatus mounted in a common treatment room with the MR magnet movable through a radiation shielded door to an imaging position. An initial MR image and an initial X-ray image is used to generate an RT program for the patient to be carried out in a plurality of separate treatment steps. Before carrying out the procedure, a registration step is performed using a phantom by which X-ray images are registered relative to MR images to generate a transformation algorithm required to align the MR images of the part of the patient relative to the X-ray images. Prior to each separate treatment step a current MR image of the part of the patient is obtained and the transformation algorithm data is used from the current MR image is used in guiding the RT treatment step.
Abstract:
In a method for guiding brachytherapy radiation treatment the patient is supported on a table and an MR magnet is brought into the treatment bunker through doors for imaging while the after-loader for the radiation source delivery is stored away in a storage location outside the RF shield. A safety system controls movement of the after-loader and the magnet. Images of the patient obtained while the patient is on the table are used to locate the applicator with respect to the lesion and organs-at-risk. The MR and X-ray compatible patient support table with MR coil integration includes a removable end-extension, which provides pelvic access for applicator insertion.
Abstract:
In MR imaging in a suite of rooms including a diagnostic room and a second surgical room, the magnet includes a diagnostic table separable from a docking station of the magnet and the second room includes a second surgical table. An imaging control computer controls operation of the imaging system and a movement control computer controls operation of the magnet moving system and the patient support table. During imaging in the surgical room, the diagnostic table is separated and docked at a secondary docking station while an emulating computer system cooperate with the imaging control computer system by emulating outputs from the disconnected diagnostic table for controlling operation of the imaging system.
Abstract:
Nuclear magnetic resonance (MR) imaging can include use of an electrical transceiver coil system comprising an array of segmented loops. The array can be arranged about a portion of an imaging subject and arranged to provide surgical access to a region of the imaging subject from at least one direction. The segmented loops can establish a volumetric radio frequency (RF) excitation field across a volume-of-interest associated with the imaging subject in response to the segmented loops receiving specified transmit phases providing a non-90-degree relative phase between segmented coil loops at adjacent ones of the segmented loops. All or at least some of the segmented loops can provide outputs indicative of an RF signal from the imaging subject, the RF signal elicited in response to RF excitation. The transceiver coil system can facilitate pre-operative, intra-operative, or post-operative MR imaging, such as facilitating access for a surgical procedure.
Abstract:
In an MR guided surgical system which is carried out in the bore of an MR magnet and uses fluorescence to detect tumor cells, there is provided a microscope system for viewing the required part of a patient which includes stereoscopic viewing components arranged for use in generating 2D and 3D images displayed to the surgeon. The optical assembly is adjustable to change the view and the visual images are overlaid by the MR images. The visual image can be adjusted in response to movement of the surgical tool and the MR image displayed and/or the image obtained can be modified in response to change in the visual image and/or movement of the tool. The components in the bore are made compatible with the MR environment. A fluorescence delivery system is operated to automatically activate the delivery system in response to detection of the level of fluorescence.