Abstract:
This invention is in the area of improved compounds and methods for transiently protecting healthy cells, and in particular hematopoietic stem and progenitor cells (HSPC), from the damage associated with ionizing radiation (IR) exposure using selective radioprotectants.
Abstract:
The invention relates to a combination which comprises: (a) a HDAC inhibitor; and (b) an anti-thrombocytopenia drug, for simultaneous, concurrent, separate or sequential use, especially for use in the treatment of a proliferative diseases. The invention also relates to pharmaceutical compositions or products comprising such a combination, or a method using such a combination
Abstract:
Myeloid function is enhanced by transplantation or infusion of allogeneic myeloid progenitor cells, including CMP, GMP, MEP and MKP cell subsets. Myeloid progenitors ameliorate sequelae of anemia and thrombocytopenia, and can prevent or treat gastrointestinal mucositis associated with chemotherapy, radiotherapy, and the like. The transplantation or infusion may be performed in the absence of HLA typing, and the cells may be mismatched at one or more Class I HLA loci. The transplantation may provide for treatment of ongoing disease, or prevention of disease in high risk patients.
Abstract:
Disclosed are transgenic non-human mammals, which useful for the screening of thrombopoietin mimetics, thrombopoietin receptor agonists, or thrombopoietin receptor antagonists active on the human thrombopoietin receptor. The transgenic non-human mammal has a genome that comprises a stably integrated transgene construct comprising a polynucleotide sequence encoding a humanized thrombopoietin receptor wherein said transgenic non-human mammal has a baseline blood platelet count corresponding to a physiological blood platelet count of a matched non-transgenic non-human mammal. The chimeric thrombopoietin receptor comprises either the transmembrane domain of a human thrombopoietin receptor or both the extracellular and transmembrane domains of a human thrombopoietin receptor operably coupled to a cytoplasmic domain of a non-human thrombopoietin receptor.
Abstract:
The present invention provides a composition comprising naked humanized, chimeric, and human anti-CEA antibodies and a therapeutic agent, which is useful for treatment of CEA expressing cancers and other diseases, and methods of use in treatment using this composition.
Abstract:
A therapeutic or prophylactic treatment method of ischemia, such as due to myocardial infarction, by administering thrombopoietin, alone or in combination with other drugs, to a patient suffering from or at risk of cardiac injury, such as myocardial ischemia. The thrombopoietin is administered in a concentration such that the subject's platelet count or production of platelets is not significantly affected.
Abstract:
The disclosure relates to methods for detecting PNH Type II cell populations in biological samples as well as methods for determining whether a patient is at an increased risk for developing thrombocytopenia or thrombosis based on the percentage of PNH Type II cells in the patient's blood. The disclosure also features reagents and conjugates for use in the methods.
Abstract:
A method of increasing hematopoietic stem cell production is disclosed. The method includes administering a TPO mimetic compound to a subject. Pharmaceutical compositions including a TPO mimetic compound and a pharmaceutically acceptable carrier are also disclosed.
Abstract:
A method of increasing hematopoietic stem cell production is disclosed. The method includes administering a TPO mimetic compound to a subject. Pharmaceutical compositions including a TPO mimetic compound and a pharmaceutically acceptable carrier are also disclosed.
Abstract:
The present invention provides a composition comprising naked humanized, chimeric, and human anti-CEA antibodies and a therapeutic agent, which is useful for treatment of CEA expressing cancers and other diseases, and methods of use in treatment using this composition.