Abstract:
The present disclosure is directed to a tissue clip for use in electrosurgical procedures. The tissue clip includes an arm having a first electrode formed thereon. The tissue clip also includes a body pivotally coupled to the arm. The body includes a power source and a second electrode. The arm is moveable from a first position relative to the body for approximating tissue and a second position closer to the body for grasping tissue therebetween.
Abstract:
Photochemical tissue boding methods for bonding neural tissues include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair, neural repair, blood vessel repair and corneal repair.
Abstract:
Various tissue glues have drawback such as toxicity, causing inflammatory reactions or insufficient bonding strength. The present invention is directed to methods of form tissue adhesion by administering to tissues compositions comprising proteins conjugated to one or more novel photosensitizers and irradiating the composition. The composition may further comprise one or more proteins not conjugated to the photosensitizer. Additionally, the present invention relates to compositions and methods wherein increased ratios of protein to photosensitizer enhance weld strength.
Abstract:
Various tissue glues have drawback such as toxicity, causing inflammatory reactions or insufficient bonding strength. The invention is directed to methods of form tissue adhesion by administering to tissues compositions comprising proteins conjugated to one or more novel photosensitizers and irradiating the composition. The composition may further comprise one or more proteins not conjugated to the photosensitizer. Additionally, the present invention relates to compositions and methods wherein increased ratios of protein to photosensitizer enhance weld strength.
Abstract:
Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
Abstract:
Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
Abstract:
A tissue clip for use in electrosurgical procedures includes an arm having a first electrode formed thereon. The tissue clip also includes a body pivotally coupled to the arm. The body includes a power source and a second electrode. The arm is moveable from a first position relative to the body for approximating tissue and a second position closer to the body for grasping tissue therebetween.
Abstract:
The present disclosure is directed to methods, compositions, devices and kits which pertain to the attachment of one body conduit portion to another body conduit portion by application of an energy source to body conduit portions in the presence of a bonding material.
Abstract:
An individually tailored endovascular stent graft device and procedure is for performing a no-cut repair of different aneurysm types: ascending, descending, arch, abdominal and cerebral aneurysms. Many aneurysm types can thus be treated without the need for open heart surgery. The stent may be biomaterial based (collagen-based in the preferred embodiment). No shape-memory metals need be used therefore allowing better implantation flexibility and better patient recovery. The stent may be fixated in the designated treatment area by remotely activating individually capsulated bicomponent biological glue by UV light/ultrasound means, wherein each component of the glue is coated separately. Further presented is a method for calculating stent graft implantation path by determining the sequence of implantation points through computer simulation means, wherein the implantation is done by discrete pulses.
Abstract:
The present disclosure is directed to a tissue clip for use in electrosurgical procedures. The tissue clip includes an arm having a first electrode formed thereon. The tissue clip also includes a body pivotally coupled to the arm. The body includes a power source and a second electrode. The arm is moveable from a first position relative to the body for approximating tissue and a second position closer to the body for grasping tissue therebetween