Abstract:
Preform and manufacturing process producing heterogeneous components with a first fraction (11) made from a first metallic material and having a cellular structure with stochastic or regular cells, and a second fraction (12) made from a second metallic material different from the first metallic material, in which the second fraction (12) at least partly infiltrates the cells of the first fraction (11). The second fraction is poured into the preform which also acts as a mould. The finished product after machining may have a unified surface of the second fraction or several zones exposing the second fraction, the first fraction, the cellular structure which is open or infiltrated with the second metallic fraction, or open zones, in a predetermined design.
Abstract:
A component suitable for a timepiece or a jewellery item may be made of a cermet material including a carbide phase and a metal binder phase selected from among gold, platinum, palladium rhodium, osmium, ruthenium, and one of the alloys thereof. The metal binder phase may be present in a range of from 3 and 25 wt. % and the carbide phase may be present in a range of from 75 and 97 wt. %.
Abstract:
An amorphously solidifying noble metal alloy has the following composition of AaBbCc, wherein: A represents at least one noble metal from a group of platinum and palladium; B represents at least one element from a group of Al, Au, Ag and Cu; and C represents at least one element from a group of Ga and Ge. The mass fraction a lies in a region of 45-60 mass percent. The mass fraction b lies in the region of 39-55 mass percent. The mass fraction c lies in the region of 0-13 mass percent. Where platinum and palladium are both present, the amorphous noble metal alloy does not have aluminum as the sole alloy component from group B. The above mass fractions a, b and c, aside from typical admixtures, impurities and alloy tolerances, add up to 100 mass percent.
Abstract:
The present invention is directed to a formulation of one or more low silver containing alloys (including those with silver content below 50 weight %, “w %”) that show one of the group of distinct pink, yellow and green colors and further demonstrate enhanced resistance to tarnish and other beneficial features described herein.
Abstract:
A composite material combining—a precious metal or an alloy containing a precious metal—and a boron-based ceramic having a melting point greater than that of said precious metal and a density at most equal to 4 g/cm3.
Abstract:
An ornamental member includes a first part composed of stainless steel containing Ni, and a second part electrically connected to the first part and composed of a material containing one or more elements selected from the group consisting of Mg, Al, Zn, and Fe. The second part is preferably provided in a region where the second part is not visually observed. Further, the second part is preferably formed using a material in the form of a film. The content of Ni in the first part is preferably 2.0 mass % or more and 29.0 mass % or less.
Abstract:
The invention relates to a timepiece or piece of jewelry comprising an alloy containing at least 750 wt.-‰ gold, characterised in that the alloy comprises copper, calcium at a concentration of less than or equal to 10‰ or 7‰ or even 5‰, and/or silicon at a concentration of less than or equal to 2‰ or less than or equal to 0.5‰.
Abstract:
A decorative piece includes a support made of a material having no usable plastic deformation in which at least one hollow is arranged. The hollow is filled with a first material forming a substrate in which at least one housing is arranged. The housing is arranged so that at least one aesthetic element is housable therein. The substrate further includes a gripper deforming by thermal expansion to retain the aesthetic element in the housing. The gripper further includes at least one setting element. A method for setting an aesthetic element on a support includes taking a support provided with at least one hollow, taking at least one aesthetic element, filling the hollow with a first material, making a setting hole and a gripper in the first material, and setting the aesthetic element by placing it in the hole and by deforming the gripper so as to retain the aesthetic element.
Abstract:
According to embodiments of the present invention, an amorphous alloy includes at least Pt, P, Si and B as alloying elements, and has a Pt weight fraction of about 0.925 or greater. In some embodiments, the Pt weight fraction is about 0.950 or greater.
Abstract:
The invention provides tantalum alloys, methods for forming tantalum alloys having a luminous, black, ceramic surface, and articles, such as, but not limited to, jewelry and watches, formed from the tantalum alloys.