摘要:
A composite fiber component for a rotor blade of a wind power plant including a first sandwich core and a second sandwich core arranged next to each other, each having an inside facing a rotor blade interior and an outside facing a rotor blade exterior. A first fiber-containing laminate layer is arranged on the inside of the first sandwich core and on the outside of the second sandwich core. A second fiber-containing laminate layer is arranged on the outside of the first sandwich core and on the outside of the second sandwich core. And, a third fiber-containing laminate layer is arranged on the inside of the first sandwich core and on the inside of the second sandwich core. Also disclosed is a rotor blade for a wind power plant having a composite fiber component as disclosed.
摘要:
A system for transporting and testing a crane includes a crane, a transporting frame and a foundation. A first connecting mechanism is provided for establishing a releasable connection between the crane and the transporting frame. A second connecting mechanism is provided for establishing a releasable connection between the transporting frame and the foundation. In a starting state, the crane, the transporting frame and the foundation are separate from one another. In a transporting state, the crane is connected to the transporting frame. In a testing state, the crane is connected to the transporting frame and the transporting frame is connected to the foundation. The invention also relates to a corresponding method. The invention makes it possible for the crane to be assembled, and tested, at a site remote from an offshore wind turbine.
摘要:
The invention relates to a method for mounting a rotor blade with a rotor blade shell and an internal space defined by the rotor blade shell, by at least one rotor blade clamp being applied around the outside of the rotor blade shell, by means of which at least one clamping force is exerted from the outside to the rotor blade shell, directed into the internal space by at least one expansion device being introduced into the internal space, by the expansion device inside the internal space being moved into at least one segment of the rotor blade around which the at least one rotor blade clamp is applied, by the at least one expansion device being expanded inside the at least one segment until at least one outwardly-acting counteracting force is exerted from the inside on the rotor blade shell.
摘要:
A method for anchoring a foundation structure (3) in a seabed (1) that includes introducing a receiving structure (6) into the seabed, lowering a support post (5) of the foundation structure (3) into the receiving structure (6), producing a connection between the receiving structure (6) and foundation structure (3) by filling the receiving structure (6) with a curable filling compound (7), and curing the curable filling compound (7), wherein the support post (5) is fixed in the receiving structure (6) prior to filling the receiving structure (6) with the curable filling compound (7). Also disclosed is a foundation structure (3) for an offshore wind turbine, for anchoring in a seabed (1), which includes at least one support post (5) to be introduced into a receiving structure (6), which has fixing elements (11, 20) for temporarily fixing in the receiving structure (6) before grouting is carried out.
摘要:
A method for operating a wind turbine (10). The wind turbine (10) is operated with variable rotational speed between predeterminable minimum and maximum rotational speeds. A characteristic variable (51) of an oscillation of the wind turbine (10) is detected. The wind turbine (10) includes a tower (14) and a rotor (13). An open-loop or closed-loop control device (36, 50) provides open-loop control or closed-loop control of the rotational speed of the rotor (13) between a minimum rotational speed and a maximum rotational speed during a power-supplying operation of the wind turbine. A sensor (40) detects a characteristic variable (51) of an oscillation of the wind turbine (10) and the minimum rotational speed is changed depending on the characteristic value (51) of the oscillation. The minimum rotational speed is altered depending on the characteristic variable (51) of the oscillation by the open-loop or closed-loop control device (36, 50).
摘要:
The invention relates to a mobile rotary drive for a wind rotor of a wind power plant having a frame comprising a drive wheel for driving a segment of a rotor shaft of the wind power plant and a drive set which drives the drive wheel in rotation as a drive pinion, wherein the drive wheel is a friction wheel and interacts with a pressing device in such a way that the pressing device generates a force which presses the friction wheel onto the segment with the result that the friction wheel can apply a drive torque to the segment through friction, wherein a torque support for supporting an opposing torque to the drive torque generated by the friction wheel is also provided. Thanks to the friction wheel drive, there is no need for specific pre-equipping of the wind power plant. The invention makes available a mobile rotary drive which can be transported from one wind power plant to another.
摘要:
A wind farm comprises a plurality of wind turbines connected to a network internal to the wind farm, a network feed-in point in the network internal to the wind farm for feeding electrical power into a supply network, a control device associated with the network feed-in point designed to control the wind turbines feeding power into the supply network by the network feed-in point on the basis of measured values recorded at the network feed-in point, and at least one additional network feed-in point having an additional control device designed to control the wind turbines feeding power into the supply network by the additional network feed-in point on the basis of measured values recorded at the additional network feed-in point, wherein the network internal to the wind farm is designed to variably connect at least one wind turbine to one of the plurality of network feed-in points.
摘要:
A rotor blade (10) of a wind power plant having a first and a second duct (16, 17) running inside the rotor blade (10) for conducting an air flow (21, 22) is provided. A method for de-icing a rotor blade (10) of a wind power plant is also provided. The rotor blade has a partition device (15) which separates the ducts (16, 17) from one another, such that the first duct (16) is arranged on a first side of the partition device (15) at the pressure side (26) of the rotor blade (10), and the second duct (17) is arranged on a second side of the partition device (15) at the suction side (25) of the rotor blade (10). In the method, the flow speed of the air flow provided in the first and second duct (16, 17) is predefined at least in portions of the rotor blade (10).
摘要:
A gear mechanism (22) of a wind power plant (10) that includes at least one planetary stage (24.1, 24.2) that has at least one planet gear carrier (41, 61) and a method for dismantling a multi-stage gear mechanism (22) of a wind power plant (10). The gear mechanism (22) is arranged in a nacelle (15) arranged on a tower (11) of a wind power plant (10). The gear mechanism (22) has at least one planetary stage (24.1, 24.2) and the at least one planetary stage (24.1, 24.2) has a planet gear carrier (41, 61) and several planet gears (45, 65) held in the planet gear carrier (41, 61) using planetary bolts (47, 67). The planet gears (45, 65) are in operative connection with a ring gear (49, 69) of the planetary stage (24.1, 24.2) surrounding the planet gears (45, 65).
摘要:
Wind farm comprising a farm master (1) and a plurality of wind energy installations (4). The farm master (1) has a controller (15) with an input for a control parameter for power supplied to a grid and transmits desired value specifications to a local controller (5) of the wind energy installations (4). According to the invention, the local controller (5) has dual structure and comprises a desired value channel (6), to which the desired value specification is applied by the farm master (1) and which is designed to output a stationary reactive power desired value, and a responsive channel (7) comprising an autonomous controller (75), to which no desired value specification is applied by the farm master (1) and to which an actual voltage of the particular wind energy installation (4) is applied via a washout filter (71). The autonomous controller (75) with the washout filter (71) enables a fast and dependent response to transient disturbances, in particular voltage spikes and voltage dips as a result of a short circuit. The individual wind energy installation and the wind farm as a whole therefore gain a behaviour which is identical to a synchronous generator and is very favourable for grid stability in the event of voltage disturbances.