摘要:
The present disclosure relates to the technical field of preparation of syndiotactic 1,2-polybutadiene (s-PB), in particular to a catalytic system and use thereof, and a preparation method of s-PB. In the present disclosure, the catalytic system includes an iron-containing organic compound, an azodicyano compound, an organoaluminum compound, and a free radical scavenger; where an iron element in the iron-containing organic compound, the azodicyano compound, the organoaluminum compound, and the free radical scavenger have a molar ratio of 1:(0.5-10):(5-100):(1-1000); and the free radical scavenger is selected from the group consisting of a sterically hindered phenol, a sterically hindered amine, and a phosphorus-containing antioxidant. The catalytic system can prepare the s-PB with a high activity at a high temperature, and the s-PB has a melting point of 60° C. to 130° C. with an extremely low gel content or even no gelation.
摘要:
A millable polyurethane rubber, preparation method and use thereof. Raw materials thereof comprise the following ingredients in part by weight: polyester diol 100 parts; micromolecular diol 2-10 parts; diisocyanate 5-20 parts; antioxidant 0.1-0.5 part; catalyst 0.03-0.08 part; peroxide 1-1.5 parts and/or sulfur 1-1.5 parts. By structural design and formula adjustment, the millable polyurethane rubber has better low temperature resistance and gas permeability compared with conventional millable polyurethane rubbers, by using special micromolecular diol, synthesizing with polyester diol at a specific ratio and vulcanizing with peroxide or sulfur, molecular strands of the polyurethane have excellent smoothness and strong interaction forces, the millable polyurethane rubber has at the same time characteristics such as time good low temperature compression set, low gas permeability and high mechanical strength and can be used in manufacturing of films in scuba suspension systems.
摘要:
The present disclosure relates to the technical field of preparation of syndiotactic 1,2-polybutadiene (s-PB), in particular to a catalytic system and use thereof, and a preparation method of s-PB. In the present disclosure, the catalytic system includes an iron-containing organic compound, an azodicyano compound, an organoaluminum compound, and a free radical scavenger; where an iron element in the iron-containing organic compound, the azodicyano compound, the organoaluminum compound, and the free radical scavenger have a molar ratio of 1:(0.5-10):(5-100):(1-1000); and the free radical scavenger is selected from the group consisting of a sterically hindered phenol, a sterically hindered amine, and a phosphorus-containing antioxidant. The catalytic system can prepare the s-PB with a high activity at a high temperature, and the s-PB has a melting point of 60° C. to 130° C. with an extremely low gel content or even no gelation.
摘要:
The present disclosure is related to the field of polymer materials, and, in particular, to a method for synthesizing a bio-based polyamide. More specifically, the disclosure provides a method for synthesizing a block copolymer consisting of a hard segment of a polyamide prepared via solid state polycondensation and a soft segment of a polyether polyol. Due to a reaction of itaconic acid, which contains a carbon-carbon double bond, with hexamethylenediamine, the bio-based polyamide is greatly different from conventional linear polyamides and exhibits a lower glass transition temperature and excellent mechanical properties. Unlike conventional processes for preparing modified polyamides, the bio-based polyamide is synthesized, according to the method, through chain extension of a polyamide with an excess amount of a diisocyanate based on amine value of the polyamide and then crosslinking of the resulting product with a polyether polyol by using glycerol as a crosslinking agent.
摘要:
A single-screw extrusion desulfurization and post-processing system and a method for preparing reclaimed rubber. The single-screw extrusion desulfurization and post-processing system comprises: a single-screw desulfurization device, a single-screw post-processing device and a closed connection device for connecting the single-screw desulfurization device and the single-screw post-processing device, the single-screw post-processing device includes a post-processing feeding unit and a post-processing unit which are connected with each other, and a post-processing screw running through the post-processing feeding unit and the post-processing unit.
摘要:
Disclosed is a method for preparing a carbon material, comprising applying a voltage to an electrically conductive medium to form an electrically conductive path in an oxygen-free environment containing a carbon source and a catalyst to obtain the carbon material, wherein the electrically conductive medium includes a solid substrate or a liquid-phase electrically conductive system; under the condition that the electrically conductive medium is the liquid-phase electrically conductive system, the carbon material is obtained in the liquid-phase electrically conductive system; and under the condition that the electrically conductive medium is the solid substrate, the carbon material is obtained on a surface of the solid substrate.
摘要:
The present disclosure provides a preparation method of a homogeneous rare earth catalyst. In the present disclosure, a depolymerizing agent is introduced into the homogeneous rare earth catalyst to promote complete depolymerization of an alkyl aluminum trimer into monomolecular alkyl aluminum. As a result, there is an increase in the number of the alkyl aluminum which serves as an effective chain transfer agent, resulting in a greatly improved chain transfer rate, such that a polymerization system has completed the chain transfer in an early stage of the reaction. Accordingly, an aluminum terminal molecular chain has an increased concentration, leading to an accelerated exchange with an active center propagating chain and a decreased influence caused by an increased viscosity of the system, maintaining living polymerization of the system.
摘要:
Disclosed is a system and a method for electrospinning superfine fiber bundling, belonging to the technical field of artificial fiber manufacturing, and comprises a spinning nozzle and a bundling disk which are coaxially arranged; the spinning nozzle is arranged at an upper part of the bundling disk; the bundling disk is connected with a motor through a coupling; the motor rotates to drive the bundling disk to rotate; a guide groove is also arranged outside the bundling disk; a center of the bundling disk is provided with a shaft; the insulated outer ring, the central conductive ring, the insulated inner ring and the shaft are fixed by bonding or thermal compounding; inner and outer edges of the central conductive ring are smooth circular arc rounded corners; an inner edge of the insulated outer ring and an outer edge of the insulated inner ring are corresponding smooth rounded corners.
摘要:
Disclosed is a system and a method for electrospinning superfine fiber bundling, belonging to the technical field of artificial fiber manufacturing, and comprises a spinning nozzle and a bundling disk which are coaxially arranged; the spinning nozzle is arranged at an upper part of the bundling disk; the bundling disk is connected with a motor through a coupling; the motor rotates to drive the bundling disk to rotate; a guide groove is also arranged outside the bundling disk; a center of the bundling disk is provided with a shaft; the insulated outer ring, the central conductive ring, the insulated inner ring and the shaft are fixed by bonding or thermal compounding; inner and outer edges of the central conductive ring are smooth circular arc rounded corners; an inner edge of the insulated outer ring and an outer edge of the insulated inner ring are corresponding smooth rounded corners.
摘要:
Disclosed is a method for preparing a carbon material, comprising applying a voltage to an electrically conductive medium to form an electrically conductive path in an oxygen-free environment containing a carbon source and a catalyst to obtain the carbon material, wherein the electrically conductive medium includes a solid substrate or a liquid-phase electrically conductive system; under the condition that the electrically conductive medium is the liquid-phase electrically conductive system, the carbon material is obtained in the liquid-phase electrically conductive system; and under the condition that the electrically conductive medium is the solid substrate, the carbon material is obtained on a surface of the solid substrate.