Predictive toxicology for biological systems
    1.
    发明授权
    Predictive toxicology for biological systems 失效
    生物系统的预测毒理学

    公开(公告)号:US07853406B2

    公开(公告)日:2010-12-14

    申请号:US10462108

    申请日:2003-06-13

    IPC分类号: G01N33/48

    CPC分类号: G06F19/704 G06F19/12

    摘要: Methods and apparatus to identify a potential toxicity of a therapy in a biological system are described. In one embodiment, a method uses a computer model that represents a set of biological processes of the biological system. The method includes executing the computer model to identify a first set of biological processes contributing to the occurrence of a toxic state of the biological system. The method also includes identifying a set of biological assays based on the first set of biological processes and testing the therapy in the set of biological assays to identify a second set of biological processes modified by the therapy. The method further includes identifying the potential toxicity of the therapy based on the second set of biological processes.

    摘要翻译: 描述了鉴定生物系统中治疗潜在毒性的方法和装置。 在一个实施例中,一种方法使用表示该生物系统的一组生物过程的计算机模型。 该方法包括执行计算机模型以识别有助于生物系统的毒性状态发生的第一组生物过程。 该方法还包括基于第一组生物过程识别一组生物测定,并测试该组生物测定中的治疗,以鉴定通过治疗修饰的第二组生物学过程。 该方法还包括基于第二组生物过程鉴定治疗的潜在毒性。

    Apparatus and method for validating a computer model
    2.
    发明授权
    Apparatus and method for validating a computer model 有权
    用于验证计算机模型的装置和方法

    公开(公告)号:US07774182B2

    公开(公告)日:2010-08-10

    申请号:US12208141

    申请日:2008-09-10

    申请人: Thomas Paterson

    发明人: Thomas Paterson

    IPC分类号: G06F17/10

    摘要: An apparatus and method for validating a computer model is described. In one embodiment, a computer-readable medium comprises instructions to associate a set of configurations of a computer model with a stimulus-response test, each configuration of the set of configurations representing a different model scenario, the stimulus-response test defining a modification to each configuration of the set of configurations. The computer-readable medium also comprises instructions to apply the stimulus-response test to the set of configurations to produce a simulated response for each configuration of the set of configurations and instructions to compare the simulated responses for the set of configurations with an expected response to the stimulus-response test.

    摘要翻译: 描述了用于验证计算机模型的装置和方法。 在一个实施例中,计算机可读介质包括将计算机模型的一组配置与刺激 - 响应测试相关联的指令,所述一组配置的每个配置表示不同的模型场景,所述刺激 - 响应测试定义了对 每个配置的一组配置。 所述计算机可读介质还包括将所述刺激响应测试应用于所述一组配置的指令,以针对所述一组配置和指令的每个配置产生模拟响应,以将所述一组配置的模拟响应与预期响应 刺激反应测试。

    Adjusted sparse linear programming method for classifying multi-dimensional biological data
    3.
    发明授权
    Adjusted sparse linear programming method for classifying multi-dimensional biological data 失效
    用于分类多维生物数据的调整稀疏线性规划方法

    公开(公告)号:US07467118B2

    公开(公告)日:2008-12-16

    申请号:US11332718

    申请日:2006-01-12

    IPC分类号: G06F15/18 G06K9/62

    摘要: The invention relates to improved methods and computer-based systems and software products useful for deriving and optimizing linear classifiers based on an adjusted sparse linear programming methodology (A-SPLP). This methodology is based on minimizing an objective function, wherein the objective function includes a loss term representing the performance of the objective function on a training dataset comprising at least two separate, adjustable weighting constants associated with classification errors for data points in-class and not-in-class, respectively.

    摘要翻译: 本发明涉及用于基于经调整的稀疏线性规划方法(A-SPLP)导出和优化线性分类器的改进方法和基于计算机的系统和软件产品。 该方法基于最小化目标函数,其中目标函数包括表示目标函数在训练数据集上的性能的损失项,所述训练数据集包括至少两个独立的,可调整的加权常数,所述加权常数与数据点类别中的分类误差相关联 -in类。

    Apparatus and Method for Validating a Computer Model
    5.
    发明申请
    Apparatus and Method for Validating a Computer Model 有权
    用于验证计算机模型的装置和方法

    公开(公告)号:US20090132219A1

    公开(公告)日:2009-05-21

    申请号:US12208141

    申请日:2008-09-10

    IPC分类号: G06G7/60

    摘要: An apparatus and method for validating a computer model is described. In one embodiment, a computer-readable medium comprises instructions to associate a set of configurations of a computer model with a stimulus-response test, each configuration of the set of configurations representing a different model scenario, the stimulus-response test defining a modification to each configuration of the set of configurations. The computer-readable medium also comprises instructions to apply the stimulus-response test to the set of configurations to produce a simulated response for each configuration of the set of configurations and instructions to compare the simulated responses for the set of configurations with an expected response to the stimulus-response test.

    摘要翻译: 描述了用于验证计算机模型的装置和方法。 在一个实施例中,计算机可读介质包括将计算机模型的一组配置与刺激 - 响应测试相关联的指令,所述一组配置的每个配置表示不同的模型场景,所述刺激 - 响应测试定义了对 每个配置的一组配置。 所述计算机可读介质还包括将所述刺激响应测试应用于所述一组配置的指令,以针对所述一组配置和指令的每个配置产生模拟响应,以将所述一组配置的模拟响应与预期响应 刺激反应测试。

    Method and apparatus for computer modeling diabetes
    8.
    发明授权
    Method and apparatus for computer modeling diabetes 失效
    计算机模拟糖尿病的方法和设备

    公开(公告)号:US07353152B2

    公开(公告)日:2008-04-01

    申请号:US10040373

    申请日:2002-01-09

    CPC分类号: G06F19/12 G06F19/00 G16H50/50

    摘要: The present invention relates generally to a mathematical and computer model of diabetes related disorders (e.g., human type 2 diabetes) within the framework of multiple macronutrient metabolism. The model includes a representation of complex physiological control mechanisms directing, for example, fat metabolism, protein metabolism and/or carbohydrate metabolism. In one embodiment, for example, the model can account for the interconversion between macronutrients, as well as their digestion, absorption, storage, mobilization, and adaptive utilization, as well as the endocrine control of these processes. In this embodiment, the model can simulate, for example, a heterogeneous group of diabetes related disorders, from insulin resistant to severe diabetic, and can predict the likely effects of therapeutic interventions.

    摘要翻译: 本发明一般涉及在多种大量营养素代谢的框架内的糖尿病相关病症(例如人2型糖尿病)的数学和计算机模型。 该模型包括指导例如脂肪代谢,蛋白质代谢和/或碳水化合物代谢的复杂生理控制机制的表示。 在一个实施方案中,例如,该模型可以解释大量营养素之间的相互转化以及它们的消化,吸收,储存,动员和适应性利用以及这些过程的内分泌控制。 在该实施方案中,该模型可以模拟例如来自胰岛素抵抗重度糖尿病的异质性糖尿病相关疾病组,并且可以预测治疗干预的可能作用。