Abstract:
In an artificial limb system having an actuator coupled to a joint for applying a torque characteristic thereto, a control bandwidth of a motor controller for a motor included in the actuator can be increased by augmenting a current feedback loop in the motor controller with a feed forward of estimated back electromotive force (emf) voltage associated with, the motor. Alternatively, the current loop is eliminated and replaced with a voltage loop related to joint torque. The voltage loop may also be augmented with the feed forward of estimated back emf, to improve the robustness of the motor controller.
Abstract:
A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
Abstract:
In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle. In some embodiments, a series elastic element is connected in series with a motor that can drive the ankle, and at least one sensor is provided with an output from which a deflection of the series elastic element can be determined. A controller determines a desired torque based on the output, and controls the motor's torque based on the determined desired torque.
Abstract:
In a powered actuator for supplying torque, joint equilibrium, and/or impedance to a joint, a motor is directly coupled to a low-reduction ratio transmission, e.g., a transmission having a gear ratio less than about 80 to 1. The motor has a low dissipation constant, e.g., less than about 50 W/(Nm)2. The transmission is serially connected to an elastic element that is also coupled to the joint, thereby supplying torque, joint equilibrium, and/or impedance to the joint while minimizing the power consumption and/or acoustic noise of the actuator.
Abstract:
Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
Abstract:
Knee orthoses or prostheses can be used to automatically when it is appropriate to initiate a stand-up sequence based on the position of the person's knee with respect to the person's ankle while the person is in a seated position. When the knee is moved to position that is forward of the ankle, at least one actuator of the orthosis or prosthesis is actuated to help raise the person from the seated position to a standing position.
Abstract:
In one aspect, the invention provides methods and apparatus facilitating an adjustable-stiffness prosthesis or orthosis (including approximations to arbitrarily definable non-linear spring functions). Spring rates may be varied under no-load conditions during a walking gate cycle to minimize power consumption. In another aspect, the invention provides methods and apparatus for outputting positive power from a prosthesis or orthosis, facilitating high-performance artificial limbs. In one embodiment of the invention, the positive power is transferred from a functioning muscle to the prosthesis or orthosis, which mimics or assists a non-functioning or impaired muscle. In another embodiment of the invention, the positive power comes from an on-board power source in the prosthesis or orthosis.
Abstract:
In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle. In some embodiments, a series elastic element is connected in series with a motor that can drive the ankle, and at least one sensor is provided with an output from which a deflection of the series elastic element can be determined. A controller determines a desired torque based on the output, and controls the motor's torque based on the determined desired torque.
Abstract:
In one aspect, the invention provides methods and apparatus facilitating an adjustable-stiffness prosthesis or orthosis (including approximations to arbitrarily definable non-linear spring functions). Spring rates may be varied under no-load conditions during a walking gate cycle to minimize power consumption. In another aspect, the invention provides methods and apparatus for outputting positive power from a prosthesis or orthosis, facilitating high-performance artificial limbs. In one embodiment of the invention, the positive power is transferred from a functioning muscle to the prosthesis or orthosis, which mimics or assists a non-functioning or impaired muscle. In another embodiment of the invention, the positive power comes from an on-board power source in the prosthesis or orthosis.
Abstract:
In a communication system for controlling a powered human augmentation device, a parameter of the powered device is adjusted within a gait cycle by wirelessly transmitting a control signal thereto, whereby the adjusted parameter falls within a target range corresponding to that parameter. The target range is selected and the device parameters are controlled such that the powered device can normalize or augment human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain and, in effect, provides at least a biomimetic response to the wearer of the powered device.