摘要:
A cell within cellular network includes user equipments (UEs) that transmit data to a base station (eNB). Over a period of time, not all of the UEs will have data to transmit. The UEs are tracked as a scheduled portion and an unscheduled portion, wherein a UE is included in the scheduled portion in response to receiving a scheduling request from the UE. Synchronization is maintained between the eNB and each UE in the scheduled portion by sending a timing adjustment (TA) command if needed. Synchronization is maintained between the eNB and each UE in the unscheduled portion by allocating a periodic reference signal (sync-RS) to each UE in the unscheduled portion and by sending a respective timing adjustment (TA) command if needed to each respective UE in the unscheduled portion in response to a respective sync-RS received from each UE in the unscheduled portion.
摘要:
This invention extends the coverage and improves the capacity of wireless communication networks using relay nodes. The relay nodes are wirelessly connected to the base station. The base station uses the same radio access technology for a link between the base station and user equipment and between the base station and the relay node. The relay node uses the same radio access technology for a link between the base station and the relay node and between the relay node and the user equipment. The relay node supports at least a Physical Layer (PHY), a Medium Access Control (MAC) sub-layer and a Radio Link Control (RLC) sub-layer protocol.
摘要:
A transmission within a wireless cellular network may include a first and second type of information. A subframe includes a plurality of symbols, at least one symbol is designated as a data symbol and at least one symbol is designated as a reference signal symbol that contains a pre-defined reference signal. The first type of information is embedded in the data symbols. If the second type of data is expected, then the second type of information is embedded in at least one reference symbol by quadrature amplitude modulating the pre-defined reference signal. The subframe is then transmitted from one node in the network to a second node. If it is determined that the second node is not expecting the second type of information, then a discontinuous transmission (DTX) response is embedded in the reference symbol instead of the second type of information.
摘要:
Transmission of information in a wireless network is performed by allocating a channel from a transmitter to a receiver. The channel has at least one time slot with each time slot having a plurality of symbols. Each slot contains at least one reference symbol (RS). As information becomes available for transmission, it is classified as prioritized information (PI) and other information. One or more priority symbols are generated using the digital samples of the priority information. Other symbols are generated using the other data. Priority symbols are transmitted on the channel in a manner that separation of priority symbol(s) and a reference symbol does not exceed a time duration of one symbol. For example, Rank Indicator (RI) is transmitted using symbol k, ACKNAK is transmitted using symbol k+1; and the reference signal (RS) is transmitted using symbol k+2, wherein symbols k, k+1, and k+2 are consecutive in time. The other symbols are transmitted in available locations.
摘要:
This invention is a method for time-sharing sounding resources. A first embodiment defines one common sounding period for all user equipment and all sounding resources. A second embodiment allows for different sounding periods so long as each individual sounding resource uses only one sounding period. A third embodiment offers the most flexibility in sharing of the sounding resources by permitting changes in time. The first option is a special case of the second option. The second option is a special case of the third option.
摘要:
A cell within cellular network includes user equipments (UEs) that transmit data to a base station (eNB). UEs are synchronized to the eNB upon entry to the cell. If a particular UE has data to transmit, it will be placed in a connected state and scheduled for transmission. Over a period of time, not all of the UEs will have data to transmit. The UEs are tracked as a scheduled portion and an unscheduled portion, wherein a UE is included in the scheduled portion in response to receiving a scheduling request from the UE. Synchronization is maintained between the eNB and each UE in the scheduled portion by sending a timing adjustment (TA) command if needed in response to receiving a scheduled transmission from each respective UE in the scheduled portion; Synchronization is maintained between the eNB and each UE in the unscheduled portion by allocating a periodic reference signal (sync-RS) to each UE in the unscheduled portion and by sending a respective timing adjustment (TA) command if needed to each respective UE in the unscheduled portion in response to a respective sync-RS received from each UE in the unscheduled portion.
摘要:
A transmission of information from a secondary to a primary node occurs in a plurality of N logical time durations. The transmission from the secondary to primary node in a wireless network is obtained using an orthogonal covering sequence and a second sequence. Embodiments of the present invention mitigate interference by calculating a first orthogonal covering (OC) index and a second OC index from an indicator received from a serving base station (NodeB). A first index n1 is derived and a second index n2 is derived using the first index n1. A first orthogonal covering (OC) index and a first cyclic shift (CS) is determined using the derived index n1. A second OC and a second CS is derived using the derived index n2. A first slot of a subframe is generated using the OC indexed by the first OC index and the first CS and a second slot of the subframe is generated using the OC indexed by the second OC index and the second CS.
摘要:
A method for allocating resources for a scheduling request indicator (SRI) is disclosed. An SRI cycle period for use by user equipment (UE) within a cell is transmitted from a NodeB in a cell to UE within the cell. The NodeB transmits a specific SRI subframe offset and an index value to the particular UE within the cell. The specific SRI subframe offset and the index value enable the UE to determine a unique combination of cyclic shift, RS orthogonal cover, data orthogonal cover, and resource block number for the UE to use as a unique physical resource for an SRI in the physical uplink control channel (PUCCH).
摘要:
This invention is a method for extending the coverage and/or improving the capacity of wireless communication networks comprising inserting a Relay Node (RN) in the Radio Access Network (RAN). The relay node relays the signal between the Base Station node (eNB) and the User Equipment (UE). The relay node is wirelessly connected to the base station. The base station uses the same radio access technology (RAT) for the base station to user equipment link and the base station to relay node link. The relay node uses the same radio access technology for the base station to relay node link and the relay node to user equipment link. The relay node is non-transparent and seen as base station by the user equipment.
摘要:
A method for allocating resources for a scheduling request indicator (SRI) is disclosed. An SRI cycle period for use by user equipment (UE) within a cell is transmitted from a NodeB in a cell to UE within the cell. The NodeB transmits a specific SRI subframe offset and an index value to the particular UE within the cell. The specific SRI subframe offset and the index value enable the UE to determine a unique combination of cyclic shift, RS orthogonal cover, data orthogonal cover, and resource block number for the UE to use as a unique physical resource for an SRI in the physical uplink control channel (PUCCH).