Abstract:
A fluorescent imaging system provides an illuminated image of an object that has been subjected to a fluorescent dye, as well as a fluorescence image of the object. Thus, highlighted fluorescent portions of the object are viewed in context with the surrounding environment of the object being viewed. The imaging system includes an optical system which separates illumination light reflected from the object from fluorescence light radiating from the object and provides illuminated and fluorescence images of the object.
Abstract:
A stereoscopic image of an object is focused on an image pickup device based on the degree to which left and right images of the object are coincident on the image pickup device. Signals produced by the image pickup device that represent the left and right images are compared with each other to develop a control signal that indicates the coincidence of the left and right images on the image pickup device, and the spacing between the image pickup device and an optical element that directs the images onto the device is changed in response to the control signal to increase the coincidence. Two alternative types of comparison are performed, each of which indicates the degree of coincidence (and hence the quality of focus) of the left and right images on the image detector. In one approach, the left and right images are compared to determine their cross correlation on the image pickup device, and the spacing is changed to maximize the correlation. Alternatively, the comparison determines the difference between the left and right images on the image pickup device, and the spacing is changed to minimize the difference. The focusing technique is useful in, e.g., the optical system of an endoscope. Rangefinding and videometry are also performed to determine the distance to the object being viewed, as well as its position and size.
Abstract:
The present disclosure relates to a surgical handpiece including an insert removably coupled to the handpiece, wherein the insert is configured to allow aspiration of fluid and tissue through the insert during a surgical procedure. Other surgical handpieces and a method for the removal of tissue during an endoscopic procedure are also disclosed.
Abstract:
A stereoscopic imaging device is described that attaches to an instrument, such as an endoscope or a borescope, which is characterized by an exit pupil in the vicinity of its proximal region. The imaging device includes a dual aperture plate and an optical switch that are disposed within a housing that attaches to the proximal region of the instrument. The dual aperture plate defines right and left, spaced-apart apertures respectively disposed at symmetric locations substantially in the plane of the exit pupil of the instrument. The optical switch alternately blocks light received from the instrument and passing through the right and left optical channels so that a stereoscopic view can be generated.
Abstract:
A method of positioning a catheter, for example a balloon or treatment catheter. The catheter is inserted in a passage and sensed through the luminal wall to correctly determine its position. As applied to prevent hemorrhage during surgery the method involves inserting the catheter in a deflated configuration along a passage such as a blood vessel near to the operative site in a position determined by direct or video-assisted sensing from outside the passage. In the event a blood vessel is cut during surgery, the already-positioned catheter inflates a balloon to occlude the passage and stop blood flow into the injured site. In one aspect, a flow-directed catheter includes an inflatable balloon attached at its distal end and an optical fiber connected to one or more light emitting regions positioned at the tip or in the vicinity of the balloon. The light is divergent and is emitted at one or more points to provide beacons that are readily detected through the walls of a blood vessel and permit a direct determination of the exact location of the balloon within the vessel. Rather than a flow-directed balloon catheter, a drug-delivery or other catheter may be used. In that case the light emitting regions are located at or adjacent to one or more drug delivery ports or other active areas in the catheter. In another or further aspect, one or more magnetic elements are provided on the catheter, and an external magnet is used to feel and engage the catheter through the vessel wall, sense its position, steer and move it along branching vessels, and anchor the balloon in a desired position.
Abstract:
The present disclosure relates to a surgical handpiece including an insert removably coupled to the handpiece, wherein the insert is configured to allow aspiration of fluid and tissue through the insert during a surgical procedure. Other surgical handpieces and a method for the removal of tissue during an endoscopic procedure are also disclosed.
Abstract:
A catheter, for example a balloon or treatment catheter, is positioned to prevent hemorrhage during surgery by inserting the catheter in a deflated configuration along a passage such as a blood vessel near to the operative site in a position determined by direct or video-assisted viewing from outside the passage. In the event a blood vessel is cut during surgery, the previously positioned catheter inflates a balloon to occlude the passage and stop blood flow into the injured site. A flow-directed catheter includes an inflatable balloon attached at its distal end and an optical fiber connected to one or more light emitting regions positioned in the vicinity of the balloon. The light is emitted transversely, and preferably omnidirectionally at one or more points with a sufficient brightness to provide beacons that are readily detected through the walls of a blood vessel and permit a direct determination of the exact location of the balloon within the vessel. Rather than a flow-directed balloon catheter, a drug-delivery or other catheter may be used. In that case the light emitting regions are located at or adjacent to one or more drug delivery ports or other active areas in the catheter.
Abstract:
A tissue retrieval bag has a wide mouth and folds for insertion through an incision to a body cavity to form a flat tray and receive excised tissue. The tissue is dropped onto the floor of the bag and the mouth of the bag is then drawn back through the incision, where it drapes the opening to provide a protected tunnel to the resected tissue still lying within the cavity. The bag is preferably transparent, and the enclosed tissue may be viewed endoscopically while a morcellizer is inserted through the tunnel and operated to aspirate the tissue, so that the bag is then readily withdrawn through the incision. Alternatively, an endoscope may be inserted through the tunnel directly into the bag to monitor and control morcellation. In a preferred embodiment the tissue is resected lung tissue and, a morcellizer blade is used to selectively morcellate only the parenchyma, leaving lymphatic tissue and the bronchial tree in the bag for histologic analysis. The bag may have pleated walls which provide dimensional stability in a shape that avoids cutter damage and cleanly catches and contains the resected tissue, thus reducing the risk of seeding tumor cells.