摘要:
The present invention relates to a method of forming single-walled carbon nanotubes. The method comprises contacting a gaseous carbon source with mesoporous TUD-1 silicate at suitable conditions. The mesoporous TUD-1 silicate comprises a metal of groups 3-13 of the Periodic Table of the Elements.
摘要:
A metal-substituted mesoporous oxide framework, such as Co-MCM-41, are disclosed which includes more than one ion species with different reduction kinetics. The reducibility correlates strongly with the pore radius of curvature, with the metal ions incorporated in smaller pores more resistant to complete reduction. The metal-ion substituted oxide framework improves catalytic processes by controlling the size of the catalytic particles forming in the pores. The metal-substituted mesoporous oxide framework can be employed in selective hydrogenation of organic chemicals, in ammonia synthesis, and in automotive catalytic exhaust systems.
摘要:
The present invention relates to a method of forming single-walled carbon nanotubes. The method comprises contacting a gaseous carbon source with mesoporous TUD-1 silicate at suitable conditions. The mesoporous TUD-1 silicate comprises a metal of groups 3-13 of the Periodic Table of the Elements.
摘要:
The present invention relates to a method of forming a particulate porous metal oxide or metalloid oxide, as well as uses of the obtained a particulate porous metal oxide or metalloid oxide. A solution of a non-ionic surfactant and either an ionic surfactant or an inorganic salt is formed in an acidic aqueous solution. A metal oxide precursor or a metalloid oxide precursor is added. The formed reaction mixture is heated under reflux upon agitation for a period sufficient to obtain a particulate porous metal oxide or metalloid oxide.
摘要:
The present invention relates to a method of forming a particulate porous metal oxide or metalloid oxide, as well as uses of the obtained a particulate porous metal oxide or metalloid oxide. A solution of a non-ionic surfactant and either an ionic surfactant or an inorganic salt is formed in an acidic aqueous solution. A metal oxide precursor or a metalloid oxide precursor is added. The formed reaction mixture is heated under reflux upon agitation for a period sufficient to obtain a particulate porous metal oxide or metalloid oxide.