Abstract:
An embedded transistor for an electrical device, such as a DRAM memory cell, and a method of manufacture thereof is provided. A trench is formed in a substrate and a gate dielectric and a gate electrode formed in the trench of the substrate. Source/drain regions are formed in the substrate on opposing sides of the trench. In an embodiment, one of the source/drain regions is coupled to a storage node and the other source/drain region is coupled to a bit line. In this embodiment, the gate electrode may be coupled to a word line to form a DRAM memory cell.
Abstract:
The present disclosure provides a resistive random access memory (RRAM) structure. The RRAM structure includes a bottom electrode on a substrate; a resistive material layer on the bottom electrode, the resistive material layer including a defect engineering film; and a top electrode on the resistive material layer.
Abstract:
The present disclosure describes a method of forming a memory device. The method includes receiving a wafer substrate, forming a poly stack pattern on the wafer substrate, performing an ion implantation process to form a source and a drain in the wafer substrate, forming a memory gate and a control gate in the defined poly stack pattern, and forming a control gate in the control poly stack pattern. Forming the memory gate further includes performing a memory gate recess to bury the memory gate in an oxide layer.
Abstract:
The present disclosure provides a resistive random access memory (RRAM) structure. The RRAM structure includes a bottom electrode on a substrate; a resistive material layer on the bottom electrode, the resistive material layer including a defect engineering film; and a top electrode on the resistive material layer.
Abstract:
The present disclosure describes a method of forming a memory device. The method includes receiving a wafer substrate, forming a poly stack pattern on the wafer substrate, performing an ion implantation process to form a source and a drain in the wafer substrate, forming a memory gate and a control gate in the defined poly stack pattern, and forming a control gate in the control poly stack pattern. Forming the memory gate further includes performing a memory gate recess to bury the memory gate in an oxide layer.
Abstract:
An embedded transistor for an electrical device, such as a DRAM memory cell, and a method of manufacture thereof is provided. A trench is formed in a substrate and a gate dielectric and a gate electrode formed in the trench of the substrate. Source/drain regions are formed in the substrate on opposing sides of the trench. In an embodiment, one of the source/drain regions is coupled to a storage node and the other source/drain region is coupled to a bit line. In this embodiment, the gate electrode may be coupled to a word line to form a DRAM memory cell.
Abstract:
A capacitor structure for a pumping circuit includes a substrate, a U-shaped bottom electrode in the substrate, a T-shaped top electrode in the substrate and a dielectric layer disposed between the U-shaped bottom and T-shaped top electrode. The contact area of the capacitor structure between the U-shaped bottom and T-shaped top electrode is extended by means of the cubic engagement of the U-shaped bottom electrode and the T-shaped top electrode.
Abstract:
A test device and method for detecting alignment of active areas and memory cell structures in DRAM devices with vertical transistors. In the test device, parallel first and second memory cell structures disposed in the scribe line region, each has a deep trench capacitor and a transistor structure. An active area is disposed between the first and second memory cell structures. The active area overlaps the first and second memory cell structures by a predetermined width. First and second conductive pads are disposed on both ends of the first memory cell structures respectively, and third and fourth conductive pads are disposed on both ends of the first memory cell structures respectively.
Abstract:
A test structure of a DRAM array includes a substrate. A transistor is formed on the substrate and has a first region and a second region as source/drain regions thereof. A deep trench capacitor is formed adjacent to the transistor and has a first width. A shallow trench isolation is formed in a top portion of the deep trench capacitor and has a second width. The second width is substantially shorter than the first one. A third region is formed adjacent to the deep trench capacitor. A first contact is formed on the substrate and contacts with the first region. A second contact is formed on the substrate and contacts with the third region.
Abstract:
A test key for validating the doping concentration of buried layers within a deep trench capacitor. The test key is deposited in the scribe line region of a wafer. In the test key of the present invention, the deep trench capacitor is deposited in the scribe line region and has three buried layers of three doping concentrations. An isolation region is deposited in the capacitor, and a first plug, a second and a third plug are coupled to three positions of one buried layer of the three respectively. The present invention determines whether the doping concentration of buried layers within a deep trench capacitor is valid by a first resistance measured between the first plug and the second plug and a second resistance measured between the second plug and the third plug.