摘要:
The following embodiments relate to an analog filter having an adjustable transfer function for use in a system or circuit that processes a signal having a changing data rate. The transfer function may be adjusted by adjusting the resistance and/or capacitance of components of the analog filter. The analog filter is calibrated based on an optimum operational parameter at a certain data rate, such as a median data rate. The analog filter may be further adjusted as the data rate of the signal changes.
摘要:
In one embodiment, a phase detector is provided comprising a first input, a second input, and first circuitry in communication with the first and second inputs, the first circuitry operative to provide an indication of a phase difference between a first signal supplied by the first input and a second signal supplied by the second input, wherein an aberration in one of the first and second signals results in an incorrect indication of phase difference. The phase detector also comprises second circuitry in communication with the first circuitry, the second circuitry operative to provide a correct indication of phase difference despite the aberration in the at least one of the first and second signals. In another embodiment, a differential phase detector is provided.
摘要:
The following embodiments relate to an analog filter having an adjustable transfer function for use in a system or circuit that processes a signal having a changing data rate. The transfer function may be adjusted by adjusting the resistance and/or capacitance of components of the analog filter. The analog filter is calibrated based on an optimum operational parameter at a certain data rate, such as a median data rate. The analog filter may be further adjusted as the data rate of the signal changes.
摘要:
In one embodiment, a phase detector is provided comprising a first input, a second input, and first circuitry in communication with the first and second inputs, the first circuitry operative to provide an indication of a phase difference between a first signal supplied by the first input and a second signal supplied by the second input, wherein an aberration in one of the first and second signals results in an incorrect indication of phase difference. The phase detector also comprises second circuitry in communication with the first circuitry, the second circuitry operative to provide a correct indication of phase difference despite the aberration in the at least one of the first and second signals. In another embodiment, a differential phase detector is provided.
摘要:
To detect the peaks level of an incoming signal, the difference between the voltage level of the incoming signal and a voltage developed across a capacitor is amplified. The amplified difference signal is applied to a transconductor adapted to vary its output current in response to changes in the amplified difference signal. The variations in the current generated by the transconductor are used to change a current flowing through a current mirror that charges the capacitor. The voltage developed across the capacitor represents the detected peak. The capacitor is discharged to a predefined voltage level during the reset periods. A second amplifier receiving the capacitor voltage is optionally used to develop a voltage across a second capacitor that is not reset and thus carries only the detected peak levels.
摘要:
Systems, methods and computer program products for correcting polarity decision associated with a polarity comparator in an analog-to-digital converter are described. The polarity comparator may perform polarity decision to determine whether an analog signal is greater or smaller than zero. If the voltage difference is greater than zero, then the analog signal may be output to other comparators without polarity inversion. If the voltage difference is smaller than zero, then the signal polarity of the analog signal may be inverted before being output to other comparators. One or more redundant comparators also may be used to correct offsets of the polarity comparator to reduced errors associated with the polarity decision.
摘要:
In an apparatus for conditioning a signal from an optical pickup unit (OPU), a single-ended channel includes a first signal processing block to calibrate a dark level of a single-ended signal corresponding to a single-ended output of the OPU, if any, and to center the single-ended signal. A dual-ended channel includes a second signal processing block to calibrate a dark level of a dual-ended signal corresponding to a dual-ended output of the OPU, if any, and to center the dual-ended signal. A multiplexer selects one of the single-ended channel and the dual-ended channel, and outputs a selected signal. A digital signal processing stage converts the selected signal to a digital signal.
摘要:
A circuit, apparatus and method for efficiently and accurately calibrating an output driver current are provided in embodiments of the present invention. In an embodiment of the present invention, a circuit comprises a first digital-to-analog converter (“DAC”) that generates a first current. A first transistor is coupled to the first DAC and generates a first biasing current responsive to the first current. A second DAC is coupled to the first transistor and generates a first control current responsive to the first biasing current. According to an embodiment of the present invention, the first and second DACs are binary weighted control DACs. According to an embodiment of the present invention, the binary weighted values of the second DAC are obtained in response to a calibration signal generated by a controller. According to an embodiment of the present invention, the first DAC is an M-bit DAC and the second DAC is an N-bit DAC, wherein M is less than N. According to an embodiment of the present invention, the circuit is in a memory device and a controller generates calibration signals.
摘要:
A driver includes a parameter generation module configured to generate timing parameters based upon a received bit stream. A timing encoding module is configured to determine a plurality of pulse defining parameters based on the timing parameters. A pulse generation module is configured to determine a plurality of generic pulses based on the plurality of pulse defining parameters. The pulse generation module is configured to combine the plurality of generic pulses into a plurality of enable signals. The pulse generation module is configured to selectively invert a first enable signal of the plurality of enable signals. The pulse generation module is configured to output the plurality of enable signals including the first enable signal to a laser driver.
摘要:
Circuitry and methods are provided for continuously adjustable frequency synthesis. The synthesis covers a wide range of possible frequencies and can be performed to a high degree of precision. In an embodiment of the invention, an analog phase-locked loop (“PLL”) performs relatively coarse wide-range frequency synthesis, while a digital PLL performs relatively fine narrow-range frequency synthesis and phase alignment. The analog PLL is capable of varying frequency in a stepwise linear fashion. The digital PLL communicates with the analog PLL to ensure that the output of the analog PLL is within the digital PLL's specified pull-in range.