Abstract:
[Object] To provide an illumination apparatus capable of suppressing a chromaticity fluctuation due to a view angle and an incident angle.[Solving Means] In an illumination apparatus for a display apparatus that includes a blue-color light-emitting diode (10) as a light source and a phosphor sheet (21) including a phosphor that obtains white light by converting a color of blue light from the blue-color light-emitting diode (10), diffusion plates (22, 23) are respectively provided opposed to a light-emitting-side surface and a light-incident-side surface of the phosphor sheet (21). The diffusion plate (22) opposed to the light-emitting-side surface of the phosphor sheet (21) suppresses a fluctuation of white-color chromaticity due to a view angle, and the diffusion plate (23) opposed to the light-incident-side surface of the phosphor sheet (21) suppresses a fluctuation of white-color chromaticity due to an incident angle.
Abstract:
An optical member realizing suppressed occurrence of a light loss between a phosphor layer performing color conversion and itself, and a display device using the same is provided. The optical member includes a base member having two opposed surfaces, and a phosphor layer provided integrally with one surface of the base member and containing a phosphor that converts a color light to another color light.
Abstract:
A phosphor sheet having a laminated structure including a first barrier material, a first barrier material, a first color conversion layer, a second color conversion layer, and a second barrier layer and a display unit and an illuminating device including display unit is provided. A diffusion plate and a display unit including a diffusion plate are also provided.
Abstract:
An optical member realizing suppressed occurrence of a light loss between a phosphor layer performing color conversion and itself, and a display device using the same is provided. The optical member includes a base member having two opposed surfaces, and a phosphor layer provided integrally with one surface of the base member and containing a phosphor that converts a color light to another color light.
Abstract:
A phosphor sheet having a laminated structure including a first barrier material, a first barrier material, a first color conversion layer, a second color conversion layer, and a second barrier layer and a display unit and an illuminating device including display unit is provided. A diffusion plate and a display unit including a diffusion plate are also provided.
Abstract:
[Object] To provide an illumination apparatus capable of suppressing a chromaticity fluctuation due to a view angle and an incident angle.[Solving Means] In an illumination apparatus for a display apparatus that includes a blue-color light-emitting diode (10) as a light source and a phosphor sheet (21) including a phosphor that obtains white light by converting a color of blue light from the blue-color light-emitting diode (10), diffusion plates (22, 23) are respectively provided opposed to a light-emitting-side surface and a light-incident-side surface of the phosphor sheet (21). The diffusion plate (22) opposed to the light-emitting-side surface of the phosphor sheet (21) suppresses a fluctuation of white-color chromaticity due to a view angle, and the diffusion plate (23) opposed to the light-incident-side surface of the phosphor sheet (21) suppresses a fluctuation of white-color chromaticity due to an incident angle.
Abstract:
A laser apparatus is disclosed. An optical element receives at least a part of laser light emitted from a laser generation source and generates interference fringes. Each of first and second two-divided detectors has two detectors arranged in the direction of which the interference fringes appear. Each of the detectors detects an amount of light of the interference fringes. These two-divided detectors are spaced apart for an odd-number multiple of nearly ¼ period of interference fringes and disposed on a plane perpendicular to an optical path of the interference fringes. Each of first and second calculation sections calculates a first difference signal of detection signals of two detectors of the two-divided detector. A selection section selects one of the first and second difference signals. A determination section determines a wavelength of the laser light corresponding to a value of the difference signal selected from the first and second difference signals.
Abstract:
An electrophoretic element includes: an electrophoretic particle; a porous layer formed of a fibrous structure containing a non-migrating particle having optical reflective characteristics different from those of the electrophoretic particle and having a plurality of pores; and a partition that is partially adjacent to the porous layer and defines a space for accommodating the electrophoretic particle. An area rate of the pores per unit area of the porous layer is small in an adjacent region where the partition is adjacent to the porous layer compared with in a non-adjacent region where the partition is not adjacent to the porous layer.
Abstract:
An electrophoretic device includes: an electrophoretic particle; a porous layer formed of a fibrous structure containing a non-electrophoretic particle having optical reflection characteristics different from those of the electrophoretic particle; and a dividing wall adjacent to the porous layer. The electrophoretic particle, the porous layer, and the dividing wall are in an insulating liquid. Volume resistivity of the fibrous structure is larger than volume resistivity of the insulating liquid, and volume resistivity of the dividing wall is larger than the volume resistivity of the insulating liquid.
Abstract:
An electrophoretic device includes: an electrophoretic particle; a porous layer formed of a fibrous structure containing a non-electrophoretic particle having optical reflection characteristics different from those of the electrophoretic particle; and a dividing wall adjacent to the porous layer. The electrophoretic particle, the porous layer, and the dividing wall are in an insulating liquid. Volume resistivity of the fibrous structure is larger than volume resistivity of the insulating liquid, and volume resistivity of the dividing wall is larger than the volume resistivity of the insulating liquid.