Abstract:
Antimicrobial compounds are provided that are polymerizable. The compounds include monomers with antimicrobial properties. The compounds have cross-linking properties. The compounds may be utilized in dental and/or medical applications, including dental composites, dentures, bonding agents, sealants, resins and medical devices.
Abstract:
Antimicrobial compounds are provided that are polymerizable. The compounds include monomers with antimicrobial properties. The compounds have cross-linking properties and are hydrolytically stable. The compounds may be utilized in dental and/or medical applications, including dental composites, dentures, bonding agents, sealants, resins and medical devices.
Abstract:
Antimicrobial compounds are provided that are polymerizable. The compounds include monomers with antimicrobial properties. The compounds have cross-linking properties and are hydrolytically stable. The compounds may be utilized in dental and/or medical applications, including dental composites, dentures, bonding agents, sealants, resins and medical devices.
Abstract:
Chelating monomers and fluoride-releasing compositions are disclosed that may be incorporated into dental composite restorative materials, dental bonding agents or other dental materials, to produce materials with high fluoride release rates, and high fluoride recharge capability. Such dental restorative materials may help reduce the level of dental caries in patients, particularly the level of caries occurring on the margins of the restorative materials.
Abstract:
Antimicrobial compounds are provided that are polymerizable. The compounds include monomers with antimicrobial properties. The compounds have cross-linking properties. The compounds may be utilized in dental and/or medical applications, including dental composites, dentures, bonding agents, sealants, resins and medical devices.
Abstract:
The present invention intends to provide a shower of a large diameter MOCVD reactor, and the difficulty for manufacturing the shower does not obviously increase when its size increases. The shower of a large diameter MOCVD reactor of the present invention comprises III group chamber, V group chamber and a cooling water chamber, and it is characterized in that, III group chamber, V group chamber and cooling water chamber are all separated as N chambers, wherein N is a natural number greater than or equal to 2 and each chamber is an individual unity.
Abstract:
A method for preparing a Li4NbxTi5-xO12/C nanocomposite as anode material for lithium-ion batteries is disclosed, which includes the following steps: (a) obtaining a mixture of a lithium salt, niobium pentaoxide, titanium dioxide (TiO2), and a carbon source in a selected stoichiometric ratio; (b) mixing the mixture in a dispersant to produce a slurry; (c) drying the slurry to produce a dried mixture; (d) treating the dried mixture under a protective atmosphere, according to a heating program to produce the Li4NbxTi5-xO12/C nanocomposite, wherein the heating program comprises: calcining the dried mixture at 600° C. for 2-6 hours, heating it at a rate of 2-20° C. per minute to 950-980° C., cooling it by natural cooling to 800-850° C., maintaining the temperature at 800-850° C. for 16 hours, and cooling it by natural cooling to room temperature.
Abstract:
Herein are described a process for forming a quaternary carbon useful in the preparation of macrolactones, an enantioselective synthesis of (+)-peloruside A, and methods for treating a patient in need of relief from cancer or a cancer-related disease. The described processes are useful for preparing compounds containing quaternary carbons, including structural analogs and derivatives of peloruside A.
Abstract:
Chelating monomers and fluoride-releasing compositions are disclosed that may be incorporated into dental composite restorative materials, dental bonding agents or other dental materials, to produce materials with high fluoride release rates, and high fluoride recharge capability. Such dental restorative materials may help reduce the level of dental caries in patients, particularly the level of caries occurring on the margins of the restorative materials.
Abstract:
Chelating monomers and fluoride-releasing compositions are disclosed that may be incorporated into dental composite restorative materials or other dental materials, to produce materials with high fluoride release rates, and high fluoride recharge capability. Such resins may be used in dental restorative materials to help reduce the level of dental caries in patients, particularly the level of caries occurring on the margins of the restorative materials.