Abstract:
A flexible electrophotographic imaging member comprising a supporting substrate, at least one imaging layer on one side of the supporting substrate, a charge blocking layer, an optional adhesive layer, a charge-generating layer, a charge transporting layer, a seam overcoat layer comprising a coating solution of a co-polyester resin and having a thickness of from about 2 to about 4 micrometers and having a width of from about 2 to about 10 millimeters and wherein said co-polyester resin is present in an amount of from about 2 to about 40 percent by weight based on the total weight of said overcoat layer, and a binder. The imaging member exhibits an excellent life cycle; excellent wear resistance, excellent electrical performance, and outstanding print quality.
Abstract:
Multilayered web stock is directed toward a curved surface and at least one layer of the web stock is heated to a temperature above a glass transition temperature of the at least one layer of the web stock. The heating can occur just before or upon engaging the curved surface. The temperature of the at least one layer remains above the glass transition temperature while engaging the curved surface, allowing reshaping and/or realignment of the at least one layer relative to other layers of the web stock according to conformance to the curved surface. The web stock is cooled before it disengages from the curved surface. The heating can be done with a high power infrared lamp focused into a line across the web stock, and the cooling can be done with a cooled fluid jet. Additionally, a preheater can be employed, and a supplemental cooler can be used.
Abstract:
An imaging member including at least a support, a charge blocking layer, a charge imaging layer, and an interfacial adhesive layer including at least a copolyester-polycarbonate resin. A process for fabricating the imaging member is also disclosed.
Abstract:
A method of treating a flexible multi-layer member exhibiting a glass transition temperature and including a surface layer, the method composed of: moving the member through a member path including: a contact zone defined by contact of the member with an arcuate surface including a curved contact zone region; a pre-contact member path before the contact zone; and a post-contact member path after the contact zone; heating sequentially each portion of the surface layer such that each of the heated surface layer portions has a temperature above the glass transition temperature while in the curved contact zone region; and cooling sequentially each of the heated surface layer portions while in the contact zone such that the temperature of each of the heated surface layer portions falls to below the glass transition temperature prior to each of the heated surface layer portions exiting the curved contact zone region, thereby defining a cooling region, wherein the heating is accomplished in a heating region encompassing any part or all of the contact zone outside the cooling region and a portion of the pre-contact member path adjacent the contact zone.