Abstract:
Methods and systems render higher bit per pixel contone images to lower bit formats using multiple registers of a SIMD processor. The rendering process uses a first register to maintain contone image values of all the pixels being simultaneously processed. A second register maintains a threshold value used during the conversion process. A third register maintains one value for the print ready format pixels (e.g., those having less bits per pixel), and a fourth register maintains the other value (e.g., 0) for the print ready format pixels. Also, a fifth register maintains the conversion error amount for all the pixels being simultaneously processed. Sixth through ninth registers maintain distributed conversion error amounts produced by the diffusing process (for different pixels being simultaneously processed); and a tenth register maintains the pixels in the print-ready format produced by the conversion for all the pixels being simultaneously processed.
Abstract:
A method, non-transitory computer readable medium and apparatus for starting a multiple scanline error diffusion method are disclosed. For example, the method includes identifying a pixel for each scanline of a plurality of scanlines, wherein the pixel that is identified in the each scanline of the plurality of scanlines is offset, setting all pixels behind the pixel for the each scanline of the plurality of scanlines that is identified with a white pixel value and starting the multiple scanline error diffusion method.
Abstract:
A method, non-transitory computer readable medium and apparatus for starting a multiple scanline error diffusion method are disclosed. For example, the method includes identifying a pixel for each scanline of a plurality of scanlines, wherein the pixel that is identified in the each scanline of the plurality of scanlines is offset, setting all pixels behind the pixel for the each scanline of the plurality of scanlines that is identified with a white pixel value and starting the multiple scanline error diffusion method
Abstract:
A method and system for estimating continuous tone values associated with input pixels in a color image are provided. The method includes receiving binarized halftone image data representing a color image, wherein the color image has a plurality of input pixels; and estimating the continuous tone values associated with each of the input pixels by: establishing a window comprising a pixel of interest and neighboring pixels in the binarized halftone image data, wherein the window comprises a plurality of sub-window's and wherein each sub-window has a plurality of predetermined number of rows and columns of pixels; and processing the binarized halftone image data in both a process direction and a cross-process direction using the window such that the processing is performed for one of the pixels in each of the rows within the sub-window and the processing is skipped for the remaining pixels in that row of that sub-window.
Abstract:
An image processor determines the number of pixels to be added/removed within each row/column of pixels of an image to accomplish a given image enlargement/reduction. The image processor evenly distributes pixels that are to be added/removed along the full length of each of the rows or columns of pixels, and adds/removes pixels in a process that identifies a set of original pixels that are immediately adjacent to the pixel to be added/removed. The image processor then replaces each of the sets of the original pixels with a replacement set (that has one more/less pixel relative to the set of original pixels). Also, for each pixel that will be added/removed, the image processor determines data values for replacement pixels in each of the replacement sets by weighting data values from original pixels in the sets of original pixels. The image processor outputs an enlarged/reduced size version of the input image.
Abstract:
A method and system for estimating continuous tone values associated with input pixels in a color image are provided. The method includes receiving binarized halftone image data representing a color image, wherein the color image has a plurality of input pixels; and estimating the continuous tone values associated with each of the input pixels by: establishing a window comprising a pixel of interest and neighboring pixels in the binarized halftone image data, wherein the window comprises a plurality of sub-windows and wherein each sub-window has a plurality of predetermined number of rows and columns of pixels; and processing the binarized halftone image data in both a process direction and a cross-process direction using the window such that the processing is performed for one of the pixels in each of the rows within the sub-window and the processing is skipped for the remaining pixels in that row of that sub-window.
Abstract:
A method of compensating for a defective inkjet in an inkjet printer has been developed. A controller identifies pixels in binary image data corresponding to the defective inkjet. The controller identifies alternative pixel locations for non-defective inkjets to print ink drops proximate to the locations of the defective pixels. When a total overlap parameter value identified in a region of image data around the pixels from the defective inkjet exceeds a predetermined value, the controller changes the alternative pixel location for at least one ink drop to reduce overlap and improve image quality.