Abstract:
A hydraulic latching circuit is provided that allows a load-sense power source to be activated and deactivated depending on the SCV function. The load sense power source is activated when the wing cylinders are fully extended to maintain proper down force on the wings. It remains activated or latched when the SCV is returned to neutral. It is deactivated or unlatched when the wing cylinders are retracted. Two circuits have been devised to accomplish this latching function. Both of these latching circuits can be used with the sequencing circuit.
Abstract:
A load sense connection is provided between the implement rockshaft cylinders and the load-sensed power source. However, to avoid tractor starting difficulty, a valve structure is provided in the power beyond fluid line to keep the fluid line closed when starting the tractor. This valve structure provides a hydraulic latching function that allows the load-sensed power source to be activated and deactivated depending on the SCV function. The load-sensed power source is activated when the rockshaft cylinder(s) is fully extended and remains activated or latched when the SCV is returned to neutral. The load-sensed power source is deactivated or unlatched when the rockshaft cylinder is retracted.
Abstract:
A load sense connection is provided between the implement rockshaft cylinders and the load-sensed power source. However, to avoid tractor starting difficulty, a valve structure is provided in the power beyond fluid line to keep the fluid line closed when starting the tractor. This valve structure provides a hydraulic latching function that allows the load-sensed power source to be activated and deactivated depending on the SCV function. The load-sensed power source is activated when the rockshaft cylinder(s) is fully extended and remains activated or latched when the SCV is returned to neutral. The load-sensed power source is deactivated or unlatched when the rockshaft cylinder is retracted.
Abstract:
A series of thin shims with concave profiles matching the cylinder rod is supported from the cylinder. A carrier mechanism attached to either the rod end or cylinder barrel supports a plurality of shims that can be pivoted between storage positions and stop positions. A pivoting and spring loaded latching arm works in conjunction with notches on the shim profile to lock individual shims in either the working or the storage position. Multiple shim stack operating ranges are provided by insertion of thicker shims between the main shim pack and the mating part. The mating part can be a cylinder rod end or cylinder rod guide, depending upon the shim pack carrier mechanism.
Abstract:
A lift and rotate agricultural implement frame comprises a main frame having a lift tube and a carrier frame slidably mounted to the lift tube. The lift tube comprises a vertically extending main support tube having planar surfaces and a corrosion resistant exterior sleeve. The corrosion resistant exterior sleeve comprises corrosion resistant plates corresponding to the planar surfaces of the main support tube. Each of the plates has an interior surface and an exterior surface. At least one of the corrosion resistant plates adjoins another plate. One of the adjoining plates is provided with an overhang that extends past the exterior surface of the other plate of the pair. The plates are fillet welded to one another between the overhang and the other plate. The plates are also provided with oblong openings having oblong edges. The oblong edges are fillet welded to the main support tube to couple the sleeve to the main support tube.
Abstract:
A stroke limiting structure for use with a lift control system on an implement includes a reciprocating link operably connected to a hydraulic cylinder and to a lift wheel assembly on an implement frame section. The link is connected by a lost motion connection to depth gauging structure including gauge plates pivotally supported on a carrier. The plates are rotatable between disengaged and engaging positions without need for tools and are maintained together on the carrier to eliminate loose parts that could be misplaced or lost. The plates in the engaging position determine the lowermost position of the implement and provide a positive mechanical stop for the implement to eliminate depth control problems caused by cylinder leakage or the like. The lost motion connection eliminates unwanted movement of the plate carrier and facilitates gauge plate pivoting for depth adjustments.
Abstract:
A seeding machine comprises a main frame segment and left and right wing frame segments. In its working configuration the wing frame segments extend transversely. In its transport configuration the wing frame segments are folded forwardly. The wing frame segments are provided with a rear rank of planting units that are mounted to the wing frame segments by pivot arms that extend downwardly and rearwardly. The pivot arms are pivotally mounted to the wing frame segments by a rock shaft. The rock shaft is provided with an actuator bell crank that is coupled to a linear actuator for rotating the rock shaft relative to the wing frame segments. The pivot arms have a working position, wherein the planting units are in their working position, and a transport position, wherein the planting units have been pivoted on their noses into their substantially vertical transport position to reduce the transverse transport width of the seeding machine.
Abstract:
A seeding machine having a wing frame with planting units. The planting units are coupled to the wing frame by a pivot arm. The pivot arms move the planting units between a horizontal working configuration and a vertical transport configuration. An operator walkway is located above the planting units. The operator walkway comprises a walkway frame and a footboard. The walkway frame is pivotally coupled to the wing frame segment by a walkway frame pin. The footboard is pivotally coupled to the walkway frame by a footboard pin. As the planting units are moved from their horizontal working configuration to their vertical transport configuration the walkway frame and attached footboard are automatically folded between the planting units and the respective wing frame segment.
Abstract:
A flexible frame structure for an implement includes a wing frame section with several fore-and-aft spaced, transversely extending rank tubes that are connected to surrounding support structure with conventional, non-resilient pin joints for rotation about a fore-and-aft extending horizontal rank axis. A transversely extending rear rank tube is rigidly connected to a fore-and-aft extending caster wheel support frame which extends forwardly above the ends of the rank tubes. A caster wheel projects forwardly from the end of the support frame out of interfering relationship with the forward tool-carrying rank. The rear rank tube and caster wheel support frame define a rigid L-shaped member which is connected to the adjacent frame section by a conventional pin and pivot structure for rotation about a first axis corresponding to the rank axis, and a second axis perpendicular to the forward direction. A diagonal brace has a leading end pivotally connected to the surrounding support structure and a trailing outer end connected near the vertex area of the L-shaped member for pivoting about a transverse axis. The non-resilient pin joints connect the outer ends of the rank tubes to the underside of the fore-and-aft leg of the L-shaped member, and pin hole clearances allow the frame section to distort for the implement flexibility, without rotation of the rank tubes, when operating on irregular ground surfaces. Centrally located fore-and-aft links are connected between the ranks for further rank rotational resistance.
Abstract:
A seeding machine comprises a main frame segment and two wing frame segments. In its working configuration the wing frame segments extends transversely. In its transport configuration the wing frame segments are folded forwardly. The wing frame segments are provided with planting units that are mounted to the wing frame segments by pivot arms that extend downwardly and rearwardly. The pivot arms are pivotally mounted to the wing frame segments by a rock shaft. The rock shaft is provided with an actuator bell crank that is coupled to a linear actuator for rotating the rock shaft relative to the wing frame segments. The pivot arms have a working position, wherein the planting units are in their working position, and a transport position, wherein the planting units have been pivoted on their noses into their substantially vertical transport position.