摘要:
In a III-nitride light emitting device, a ternary or quaternary light emitting layer is configured to control the degree of phase separation. In some embodiments, the difference between the InN composition at any point in the light emitting layer and the average InN composition in the light emitting layer is less than 20%. In some embodiments, control of phase separation is accomplished by controlling the ratio of the lattice constant in a relaxed, free standing layer having the same composition as the light emitting layer to the lattice constant in a base region. For example, the ratio may be between about 1 and about 1.01.
摘要:
A semiconductor structure includes a light emitting region, a p-type region disposed on a first side of the light emitting region, and an n-type region disposed on a second side of the light emitting region. At least 10% of a thickness of the semiconductor structure on the first side of the light emitting region comprises indium. Some examples of such a semiconductor light emitting device may be formed by growing an n-type region, growing a p-type region, and growing a light emitting layer disposed between the n-type region and the p-type region. The difference in temperature between the growth temperature of a part of the n-type region and the growth temperature of a part of the p-type region is at least 140° C.
摘要:
In a device, a III-nitride light emitting layer is disposed between an n-type region and a p-type region. A first spacer layer, which is disposed between the n-type region and the light emitting layer, is doped to a dopant concentration between 6×1018 cm−3 and 5×1019 cm−3. A second spacer layer, which is disposed between the p-type region and the light emitting layer, is not intentionally doped or doped to a dopant concentration less than 6×1018 cm−3.
摘要翻译:在器件中,III族氮化物发光层设置在n型区域和p型区域之间。 设置在n型区域和发光层之间的第一间隔层被掺杂到6×10 18 cm -3和5×10 19 cm -3之间的掺杂剂浓度。 设置在p型区域和发光层之间的第二间隔层不是有意地掺杂或掺杂到小于6×10 18 cm -3的掺杂剂浓度。
摘要:
In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane−abulk)|/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.
摘要:
The present invention relates to electronic devices formed in crystallites of III-V nitride materials. Specifically, the present invention simplifies the processing technology required for the fabrication of high-performance electronic devices in III-V nitride materials.
摘要:
In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane−abulk)/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.
摘要:
LEDs employing a III-Nitride light emitting active region deposited on a base layer above a substrate show improved optical properties with the base layer grown on an intentionally misaligned substrate with a thickness greater than 3.5 &mgr;m. Improved brightness, improved quantum efficiency, and a reduction in the current at which maximum quantum efficiency occurs are among the improved optical properties resulting from use of a misaligned substrate and a thick base layer. Illustrative examples are given of misalignment angles in the range from 0.05° to 0.50°, and base layers in the range from 6.5 to 9.5 &mgr;m although larger values of both misalignment angle and base layer thickness can be used. In some cases, the use of thicker base layers provides sufficient structural support to allow the substrate to be removed from the device entirely.
摘要:
In a III-nitride light emitting device, the device layers including the light emitting layer are grown over a template designed to reduce strain in the device, in particular in the light emitting layer. Reducing the strain in the light emitting device may improve the performance of the device. The template may expand the lattice constant in the light emitting layer over the range of lattice constants available from conventional growth templates. Strain is defined as follows: a given layer has a bulk lattice constant abulk corresponding to a lattice constant of a free standing material of a same composition as that layer and an in-plane lattice constant ain-plane corresponding to a lattice constant of that layer as grown in the structure. The amount of strain in a layer is |(ain-plane−abulk)|/abulk. In some embodiments, the strain in the light emitting layer is less than 1%.
摘要:
A light emitting device in accordance with an embodiment of the present invention includes a first semiconductor layer of a first conductivity type having a first surface, and an active region formed overlying the first semiconductor layer. The active region includes a second semiconductor layer which is either a quantum well layer or a barrier layer. The second semiconductor layer is formed from a semiconductor alloy having a composition graded in a direction substantially perpendicular to the first surface of the first semiconductor layer. The light emitting device also includes a third semiconductor layer of a second conductivity type formed overlying the active region.
摘要:
P-type layers of a GaN based light-emitting device are optimized for formation of Ohmic contact with metal. In a first embodiment, a p-type GaN transition layer with a resistivity greater than or equal to about 7 &OHgr;cm is formed between a p-type conductivity layer and a metal contact. In a second embodiment, the p-type transition layer is any III-V semiconductor. In a third embodiment, the p-type transition layer is a superlattice. In a fourth embodiment, a single p-type layer of varying composition and varying concentration of dopant is formed.