摘要:
Embodiments of the present invention are directed to cost-effective defect amelioration in manufactured electronic devices that include nanoscale components. Certain embodiments of the present invention are directed to amelioration of defects in electronic devices that contain nanoscale demultiplexers. In certain embodiments of the present invention, the nanoscale-demultiplexer-containing devices include reconfigurable encoders. In one embodiment of the present invention, the table of codes within a reconfigurable encoder is permuted, and a device is configured in accordance with the permuted codes, in order to produce a permuted table of codes that, when input to an appropriately configured nanoscale demultiplexer, produces correct outputs despite defects in the nanoscale demultiplexer.
摘要:
One embodiment of the present invention provides a demultiplexer implemented as a nanowire crossbar or a hybrid nanowire/microscale-signal-line crossbar with resistor-like nanowire junctions. The demultiplexer of one embodiment provides demultiplexing of signals input on k microscale address lines to 2k or fewer nanowires, employing supplemental, internal address lines to map 2k nanowire addresses to a larger, internal, n-bit address space, where n>k. A second demultiplexer embodiment of the present invention provides demultiplexing of signals input on n microscale address lines to 2k nanowires, with n>k, using 2k, well-distributed, n-bit external addresses to access the 2k nanowires. Additional embodiments of the present invention include a method for evaluating different mappings of nanowire addresses to internal address-spaces of different sizes, or to evaluate mappings of nanowires to external address-spaces of different sizes, metrics for evaluating address mapping and demultiplexer designs, and demultiplexer design methods.
摘要:
One embodiment of the present invention is a method for constructing defect-and-failure-tolerant demultiplexers. This method is applicable to nanoscale, microscale, or larger-scale demultiplexer circuits. Demultiplexer circuits can be viewed as a set of AND gates, each including a reversibly switchable interconnection between a number of address lines, or address-line-derived signal lines, and an output signal line. Each reversibly switchable interconnection includes one or more reversibly switchable elements. In certain demultiplexer embodiments, NMOS and/or PMOS transistors are employed as reversibly switchable elements. In the method that represents one embodiment of the present invention, two or more serially connected transistors are employed in each reversibly switchable interconnection, so that short defects in up to one less than the number of serially interconnected transistors does not lead to failure of the reversibly switchable interconnection. In addition, error-control-encoding techniques are used to introduce additional address-line-derived signal lines and additional switchable interconnections so that the demultiplexer may function even when a number of individual, switchable interconnections are open-defective.
摘要:
One embodiment of the present invention provides a demultiplexer implemented as a nanowire crossbar or a hybrid nanowire/microscale-signal-line crossbar with resistor-like nanowire junctions. The demultiplexer of one embodiment provides demultiplexing of signals input on k microscale address lines to 2k or fewer nanowires, employing supplemental, internal address lines to map 2k nanowire addresses to a larger, internal, n-bit address space, where n>k. A second demultiplexer embodiment of the present invention provides demultiplexing of signals input on n microscale address lines to 2k nanowires, with n>k, using 2k, well-distributed, n-bit external addresses to access the 2k nanowires. Additional embodiments of the present invention include a method for evaluating different mappings of nanowire addresses to internal address-spaces of different sizes, or to evaluate mappings of nanowires to external address-spaces of different sizes, metrics for evaluating address mapping and demultiplexer designs, and demultiplexer design methods.
摘要:
Embodiments of the present invention include defect-tolerant demultiplexer crossbars that employ, or that can be modeled by demultiplexer crossbars that employ, threshold logic “TL” elements. The threshold-logic elements provide for tolerance for signal variation on internal signals lines of a defect-tolerant demultiplexer crossbar, and thus tolerance for defects which produce internal signal variation.
摘要:
One embodiment of the present invention is a method for constructing defect-and-failure-tolerant demultiplexers. This method is applicable to nanoscale, microscale, or larger-scale demultiplexer circuits. Demultiplexer circuits can be viewed as a set of AND gates, each including a reversibly switchable interconnection between a number of address lines, or address-line-derived signal lines, and an output signal line. Each reversibly switchable interconnection includes one or more reversibly switchable elements. In certain demultiplexer embodiments, NMOS and/or PMOS transistors are employed as reversibly switchable elements. In the method that represents one embodiment of the present invention, two or more serially connected transistors are employed in each reversibly switchable interconnection, so that short defects in up to one less than the number of serially interconnected transistors does not lead to failure of the reversibly switchable interconnection. In addition, error-control-encoding techniques are used to introduce additional address-line-derived signal lines and additional switchable interconnections so that the demultiplexer may function even when a number of individual, switchable interconnections are open-defective.
摘要:
Embodiments of the present invention are directed to cost-effective defect amelioration in manufactured electronic devices that include nanoscale components. Certain embodiments of the present invention are directed to amelioration of defects in electronic devices that contain nanoscale demultiplexers. In certain embodiments of the present invention, the nanoscale-demultiplexer-containing devices include reconfigurable encoders. In one embodiment of the present invention, the table of codes within a reconfigurable encoder is permuted, and a device is configured in accordance with the permuted codes, in order to produce a permuted table of codes that, when input to an appropriately configured nanoscale demultiplexer, produces correct outputs despite defects in the nanoscale demultiplexer.
摘要:
One embodiment of the present invention is a method for constructing defect-and-failure-tolerant demultiplexers. This method is applicable to nanoscale, microscale, or larger-scale demultiplexer circuits. Demultiplexer circuits can be viewed as a set of AND gates, each including a reversibly switchable interconnection between a number of address lines, or address-line-derived signal lines, and an output signal line. Each reversibly switchable interconnection includes one or more reversibly switchable elements. In certain demultiplexer embodiments, NMOS and/or PMOS transistors are employed as reversibly switchable elements. In the method that represents one embodiment of the present invention, two or more serially connected transistors are employed in each reversibly switchable interconnection, so that short defects in up to one less than the number of serially interconnected transistors does not lead to failure of the reversibly switchable interconnection. In addition, error-control-encoding techniques are used to introduce additional address-line-derived signal lines and additional switchable interconnections so that the demultiplexer may function even when a number of individual, switchable interconnections are open-defective.
摘要:
Embodiments of the present invention include defect-tolerant demultiplexer crossbars that employ, or that can be modeled by demultiplexer crossbars that employ, threshold logic “TL” elements. The threshold-logic elements provide for tolerance for signal variation on internal signals lines of a defect-tolerant demultiplexer crossbar, and thus tolerance for defects which produce internal signal variation.
摘要:
One embodiment of the present invention provides a demultiplexer implemented as a nanowire crossbar or a hybrid nanowire/microscale-signal-line crossbar with resistor-like nanowire junctions. The demultiplexer of one embodiment provides demultiplexing of signals input on k microscale address lines to 2k or fewer nanowires, employing supplemental, internal address lines to map 2k nanowire addresses to a larger, internal, n-bit address space, where n>k. A second demultiplexer embodiment of the present invention provides demultiplexing of signals input on n microscale address lines to 2k nanowires, with n>k, using 2k, well-distributed, n-bit external addresses to access the 2k nanowires. Additional embodiments of the present invention include a method for evaluating different mappings of nanowire addresses to internal address-spaces of different sizes, or to evaluate mappings of nanowires to external address-spaces of different sizes, metrics for evaluating address mapping and demultiplexer designs, and demultiplexer design methods.