Abstract:
A double-lens structure and a method for fabricating the same are provided. The double-lens structure includes a first lens structure formed of a color filter layer having a first refractive index and a second lens structure formed of a micro-lens material layer having a second refractive index and disposed on the first lens structure. The first refractive index of the color filter layer is different from the second refractive index of the micro-lens material layer. An incident light enters the second lens structure and then passes through the first lens structure. Further, a method for fabricating the double-lens structure is also provided.
Abstract:
An image sensor includes a sensing layer, a number of filter units, and a grid structure. The filter units are disposed on the sensing layer. The grid structure is disposed on the sensing layer and surrounding each of the filter units. The grid structure includes a first partition wall disposed on the sensing layer and located between two adjacent filter units, and a second partition wall disposed on the first partition wall located between the two adjacent filter units. The refractive index of the first partition wall is less than the refractive index of the second partition wall.
Abstract:
An image-sensor structure is provided. The image-sensor structure includes a substrate with a plurality of photoelectric conversion units formed therein, a plurality of color filters formed above the substrate, wherein the color filters are divided into red color filters, green color filters and blue color filters, a plurality of microlenses correspondingly formed above the color filters, a transparent material layer formed above the microlenses, a first filter blocking infrared (IR) light formed above the transparent material layer, a second filter allowing transmission of visible light formed above the first filter, and a lens module formed above the second filter.
Abstract:
An image-sensing device includes a semiconductor substrate, a passive layer, and a light-collecting element. The semiconductor substrate includes a photo-sensing element, and the passive layer is disposed over the semiconductor substrate. The light-collecting element is disposed over the passive layer, and includes first, second and third loops. The first loop has a first width. The second loop surrounds the first loop and has a second width that is less than the first width. The third loop surrounds the first and second loops, and has a third width that is less than the second width. The light-collecting element aligns with the photo-sensing element, and the first, second, and third loops include different refractive indices.
Abstract:
An image sensor includes a sensing layer, a transparent plate, and a first guided-mode resonance structure. The sensing layer includes sensing units configured to sense a light beam. The transparent plate is located above the sensing layer. The first guided-mode resonance structure is disposed on a first area of the transparent plate, and blocks a first waveband of the light beam from passing through.
Abstract:
The present invention provides an image sensor, including: a sensor array layer formed of a plurality of normal sensor units and a plurality of spectrometer sensor units; a first guided mode resonance (GMR) structure having a first grating pitch and disposed on the sensor array layer to cover N (where N is an integer) of the spectrometer sensor units; a second GMR structure having a second grating pitch and disposed on the sensor array layer to cover N of the spectrometer sensor units; and a plurality of color filter units disposed on the sensor array layer to cover the normal sensor units.
Abstract:
Embodiments of an image sensor are provided. The image sensor includes a sensing layer, a filter unit and a microlens. The filter unit is disposed on the sensing layer, and the microlens is disposed on the filter unit. The filter unit has a gradient refractive index. Therefore, the sensitivity of the image sensor is improved.
Abstract:
A double-lens structure and a method for fabricating the same are provided. The double-lens structure includes a first lens structure formed of a color filter layer having a first refractive index and a second lens structure formed of a micro-lens material layer having a second refractive index and disposed on the first lens structure. The first refractive index of the color filter layer is different from the second refractive index of the micro-lens material layer. An incident light enters the second lens structure and then passes through the first lens structure. Further, a method for fabricating the double-lens structure is also provided.
Abstract:
An image sensor includes a sensing layer, filter units, and a grid structure. The filter units are disposed on the sensing layer. The grid structure is disposed on the filter units, and includes grating portions. The grating portions form a number of grating groups, and each of the grating groups is separated from each other.
Abstract:
An imaging apparatus includes a filter, a first image sensor and a second image sensor. The filter transmits a first light in a range of wavelengths and reflects a reflected light out of the range of wavelengths. An incident light is split to the first light and the reflected light. The first image sensor receives the first light to generate a first image signal. The second image sensor receives the reflected light to generate a second image signal.