Abstract:
This present disclosure relates to processes and apparatuses for toluene and benzene methylation in an aromatics complex for producing paraxylene. More specifically, the present disclosure relates to processes and apparatuses for toluene and benzene methylation within an aromatics complex for producing paraxylene wherein an embodiment uses a reactor having a refractory comprising a low iron content refractory.
Abstract:
A process for the production of para-xylene is presented. The process includes the isomerization of C8 aromatics to para-xylene utilizing a new catalyst. The new catalyst is a layer MFI zeolite and is represented by the empirical composition in the as synthesized and anhydrous basis expressed by the empirical formula of: Mmn+Rrp+AlSiyOz where M is at least one exchangeable cation selected from the group consisting of alkali and alkaline earth metals and R is at least one organoammonium cation.
Abstract:
This present disclosure relates to processes and apparatuses for methylation of aromatics in an aromatics complex for producing a xylene isomer product. More specifically, the present disclosure relates to processes and apparatuses for producing para-xylene by the selective methylation of toluene and/or benzene in an aromatics complex using processed toluene instead of crude toluene.
Abstract:
Processes and apparatuses for converting PFAS. PFAS are heated and introduced to a reactant which will convert the PFAS. The PFAS may be in a stream that is a PFAS enriched stream formed by desorbing the PFAS from an adsorbent which removed the PFAS from a contaminant stream. An effluent from the PFAS conversion reaction is treated in a treatment zone and a treated effluent may be released to the atmosphere.
Abstract:
This present disclosure relates to processes and apparatuses for toluene and benzene methylation in an aromatics complex for producing paraxylene. More specifically, the present disclosure relates to processes and apparatuses for toluene and benzene methylation within an aromatics complex for producing paraxylene wherein an embodiment uses a reactor having a refractory comprising a low iron content refractory.
Abstract:
A process for the production of para-xylene is presented. The process includes the isomerization of C8 aromatics to para-xylene utilizing a new catalyst. The new catalyst is a layer MFI zeolite and is represented by the empirical composition in the as synthesized and anhydrous basis expressed by the empirical formula of: Mmn+Rrp+AlSiyOz where M is at least one exchangeable cation selected from the group consisting of alkali and alkaline earth metals and R is at least one organoammonium cation.
Abstract:
Apparatuses and processes for producing a para-xylene stream in an aromatics complex which include a toluene methylation unit and an adsorptive separation unit. A hydrogenation zone and an oxygenate removal zone are utilized to remove oxygenates from the effluent of the toluene methylation unit. The hydrogenation zone may be a liquid phase hydrogenation zone.
Abstract:
This present disclosure relates to processes and apparatuses for methylation of aromatics in an aromatics complex for producing a xylene isomer product. More specifically, the present disclosure relates to processes and apparatuses for producing para-xylene by the selective methylation of toluene and/or benzene in an aromatics complex using processed toluene instead of crude toluene.
Abstract:
A process for the production of para-xylene is presented. The process includes the isomerization of C8 aromatics to para-xylene utilizing a new catalyst. The new catalyst and designated as UZM-54 is represented by the empirical composition in the as synthesized and anhydrous basis expressed by the empirical formula of: Mmn+R1 r1p1+ R2 r2p2+ Al1-xExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as sodium and/or potassium, R1 and R2 are organoammonium cation and E is a framework element such as gallium, iron, boron, or indium. UZM-54 are characterized by unique x-ray diffraction patterns, high meso surface area, low Si/Al ratios.
Abstract:
A process for the production of para-xylene is presented. The process includes the isomerization of C8 aromatics to para-xylene utilizing a new catalyst. The new catalyst and designated as UZM-54 is represented by the empirical composition in the as synthesized and anhydrous basis expressed by the empirical formula of: Mmn+R1 r1p1+R2 r2p2+Al1-xExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as sodium and/or potassium, R1 and R2 are organoammonium cation and E is a framework element such as gallium, iron, boron, or indium. UZM-54 are characterized by unique x-ray diffraction patterns, high meso surface area, low Si/Al ratios.