Abstract:
A media-agitation type pulverizer of the present invention includes: a guide ring installed to radially divide a lower region of a pulverization chamber into an inner section and an annular outer section. A flow of a mixture of a raw material slurry and pulverizing media is formed as a helicoidal flow comprising a secondary flow flowing through a circulation flow path which has an upward flow path and a downward flow path created, respectively, in the outer section and the inner section of the lower region of the pulverization chamber, with respect to the guide ring. A rotational-flow suppressing device is provided within the pulverization chamber and adapted to strengthen the secondary flow of the helicoidal flow, thereby stabilizing the helicoidal flow. As a result, a media-agitation type pulverizer is provided which is capable of creating a uniformized, stable helicoidal flow in a mixture of pulverizing media and a raw material slurry, without unevenness of a centrifugal force distribution, thereby performing pulverization/dispersion uniformly with satisfactory energy efficiency.
Abstract:
A media-agitation pulverizer is capable of creating a uniformized, stable helicoidal flow in a mixture of pulverizing media and a raw material slurry, thereby performing pulverization/dispersion uniformly with satisfactory energy efficiency. The media-agitation pulverizer includes a guide ring installed to radially divide a lower region of a pulverization chamber into an inner section and an annular outer section, whereby a flow of a mixture of a raw material slurry and pulverizing media is formed as a helicoidal flow including a secondary flow flowing through a circulation flow path with respect to the guide ring; and rotational-flow suppressing device is provided within the pulverization chamber and adapted to strengthen the secondary flow of the helicoidal flow, thereby stabilizing the helicoidal flow.
Abstract:
An anode active material for use in a lithium secondary battery including a mixture of graphite I that has, according to X-ray powder diffraction, d002 of not smaller than 0.3354 nm and not greater than 0.337 nm, Lc(004) of smaller than 100 nm, La(110) of not smaller than 100 nm, and a half width of the peak of a plane (101) at a diffraction angle (2θ) of 44 degrees to 45 degrees of not smaller than 0.65 degree and another graphite so as to have, according to X-ray powder diffraction, d002 of not smaller than 0.3354 nm and not greater than 0.337 nm, Lc(004) of not smaller than 80 nm, La(110) of not smaller than 100 nm, and a half width of the peak of a plane (101) at a diffraction angle (2θ) of 44 degrees to 45 degrees of not smaller than 0.5 degree.
Abstract:
By a method that includes coking a residue resulting from distillation of crude oil under reduced pressure and having API gravity of 1 to 5, an asphaltene content of 10 to 50%, a resin content of 5 to 30%, and a sulfur content of 1 to 12% to obtain coke, pulverizing the coke to obtain a carbon powder, and heating the carbon powder at 1000 to 3500 deg C., a graphite anode active material for use in a lithium secondary battery is obtained that has, in X-ray powder diffraction, d002 of not smaller than 0.3354 nm and not greater than 0.337 nm, Lc(004) of smaller than 100 nm, La(110) of not smaller than 100 nm, and a half width of the peak of a plane (101) at a diffraction angle (2θ) of 44 degrees to 45 degrees of not smaller than 0.65 degree.
Abstract:
A device for moving a metal cope towards and apart from a stationary metal drag, used in a metal mold casting device that uses the metal cope and drag, comprising: an upper die plate (9) for carrying the metal cope; a frame (5; 25); a metal mold opening and closing device (6) mounted on the frame for carrying and vertically moving the upper die plate relative to the frame so as to move the metal cope attached to the upper die plate between a position that is above and relatively near the metal drag and a position that is at the metal drag; and an actuator (3; 23, 23) connected to the frame for moving the frame so as to move the metal cope attached to the upper die plate between the position that is above and relatively near the metal drag and a position that is relatively far from the metal drag.
Abstract:
In an accelerator, an acceleration rotor made of resin is rotatably supported in a support shaft, one end portion of a pedal arm is connected to an acceleration pedal, and the other end portion of the pedal arm is attached to attachment portions of the acceleration rotor. The attachment portions are provided in the acceleration rotor to be separated in a rotation direction of the acceleration rotor. For example, the attachment portions are a press-fitting portion, into which a top end part of the other end portion of the pedal arm is press-fitted, and an insertion portion, into which a bending part of the other end portion of the pedal arm is inserted. Thus, the pedal arm can be accurately readily attached to the resinous acceleration rotor to be only rotated around the support shaft of the acceleration rotor.
Abstract:
An electrostatic chucking mechanism including an electrode body, a dielectric block placed on the front of the electrode body and having a dielectric portion to be dielectrically polarized for electrostatically chucking an object to be chucked, and an intermediate layer placed between the electrode body and the dielectric block. The intermediate layer is formed of a metal such as indium having extendibility for absorbing thermal deformation of the electrode body or the dielectric block and is heated and pressurized, thereby joining the electrode body and the dielectric block. A thin film of indium, chrome, or the like, is prepared on the junction face of the dielectric block, enhancing a junction force and adhesion by the intermediate layer.
Abstract:
A thin film deposition apparatus forms a thin film onto substrates by use of a plasma gas and a material gas. In this apparatus, generation of particles in a deposition chamber can be reduced and hence a high quality thin film with fewer surface defects can be formed. The apparatus comprises a bell jar, a power-supply unit for supplying electric power to the bell jar, a deposition chamber, a vacuum pumping unit for evacuating the deposition chamber, a first gas introduction unit for introducing a gas used for generating plasma, and a second gas introduction unit for introducing a material gas used for forming the thin film, and further a blocking member for preventing either or both of the material gas and the plasma from entering a space between a gas supply end-portion of the second introduction unit and an interior surface of the deposition chamber. The blocking member is shaped to have relatively large curvature.
Abstract:
A device for moving a metal cope towards and apart from a stationary metal drag, used in a metal mold casting device that uses the metal cope and drag, comprising: an upper die plate (9) for carrying the metal cope; a frame (5; 25); a metal mold opening and closing device (6) mounted on the frame for carrying and vertically moving the upper die plate relative to the frame so as to move the metal cope attached to the upper die plate between a position that is above and relatively near the metal drag and a position that is at the metal drag; and an actuator (3; 23, 23) connected to the frame for moving the frame so as to move the metal cope attached to the upper die plate between the position that is above and relatively near the metal drag and a position that is relatively far from the metal drag.
Abstract:
In a vacuum processing system used in a semiconductor device manufacturing process, a plate-shaped placement area protector made of a dielectric material having a surface of dimensions and shape matching those of a surface of a substrate or an area for substrate placement in a surface of a substrate stage in place of the substrate. An etching gas is introduced into a vacuum vessel by a gas introduction mechanism and predetermined high-frequency electromagnetic wave power is applied to the substrate stage from a stage high-frequency electromagnetic wave power source. Plasma is formed in the proximity of the surface of the substrate stage by the applied high-frequency electromagnetic wave power, and a deposited film on the surface of the substrate stage is removed with the plasma. The placement area protector has the same electrical properties as the deposited film.