Abstract:
An optical recording medium including a light transmitting resin layer which is hardly susceptible to flaws and stripping and is formed with high accuracy, and a manufacturing method and a manufacturing device of the optical recording medium are provided. An optical recording medium 10 includes: a disc-like shaped support substrate 12 having an information recording face 12A on one side; and a light transmitting resin layer 14 formed on the information recording face 12A of the support substrate 12. An annular convex portion 16 projecting in a thickness direction so as to surround a center axis line 12B of the support substrate 12 is formed on the resin layer 14, and the resin layer 14 is extended to the inside of the annular convex portion 16 in a radial direction.
Abstract:
A method is provided for preparing an optical information medium comprising a disk-shaped supporting substrate having a center hole, an annular information recording area thereon, and an annular resin-based light-transmitting layer on the information recording area through which recording/reading laser beam is transmitted. In the formation of the light-transmitting layer, a coating fluid containing an actinic radiation-curable resin is fed onto the supporting substrate having the information-recording area formed thereon and the supporting substrate is rotated for spreading the coating fluid over the supporting substrate to thereby form a resin layer, and subsequently, the resin layer is irradiated with actinic radiation to thereby cure said resin layer while reducing the rotation speed of the supporting substrate. This method is capable of suppressing the size of the bump formed in the outer peripheral region of the light-transmitting layer.
Abstract:
The optical recording medium includes a supporting substrate 2, an information layer 3 formed on a surface of the supporting substrate 2, a first resin layer 4 formed on the information layer 3 and having a thickness of 30 to 200 μm, a moisture-proof layer 5 formed on a rear surface of the supporting substrate 2, a second resin layer 6 formed on the moisture-proof layer 5 and having a thickness of 30 to 200 μm, and a label layer 7 formed on the second resin layer 6. The second resin layer 6 contains a filler and is formed by a screen printing method.
Abstract:
An optical information medium having a light transmission layer obtained by curing a composition containing a urethane di(meth)acrylate (A) of the formula (I) and the other urethane di(meth)acrylate (B), and having a tensile elastic modulus of 600 to 1300 MPa at 25° C. and a light transmittance of 80% or more at wavelength of 400 nm (in the formula, R1=an alicyclic diisocyanate residue, R2=an alkylene group or an organic group containing a cycloalkyl group or ester bond, R3=H or methyl group.):
Abstract:
An applied film forming apparatus that forms an applied film on one surface of a substrate includes a dripping unit that drips an energy beam-curing applied material onto the one surface of the substrate, a rotating unit that rotates the substrate, a curing processing unit that emits an energy beam onto the applied material to cure the applied material, an emission regulating unit that regulates emission of the energy beam onto the applied material on an outer circumferential edge part of the one surface of the substrate, and a control unit. After controlling the dripping unit to drip the applied material onto the one surface and controlling the rotating unit to rotate the substrate and spread the applied material, the control unit controls the rotating unit to rotate the substrate at a predetermined rotational velocity, controls the curing processing unit to emit the energy beam toward the one surface, and additionally controls the emission regulating unit to regulate the emission of the energy beam onto the applied material on the outer circumferential edge part of the one surface of the substrate.
Abstract:
An optical information medium having a light transmission layer obtained by curing a composition containing a urethane di(meth)acrylate (A) of the formula (I) and the other urethane di(meth)acrylate (B), and having a tensile elastic modulus of 600 to 1300 MPa at 25° C. and a light transmittance of 80% or more at wavelength of 400 nm (in the formula, R1=an alicyclic diisocyanate residue, R2=an alkylene group or an organic group containing a cycloalkyl group or ester bond, R3=H or methyl group.):
Abstract:
An intermediate for an optical recording medium, according to the present invention, is an intermediate produced beforehand for manufacturing an optical recording medium that has a central mounting hole formed in a central portion thereof and one or more kinds of functional layers formed on a surface thereof, for enabling at least one of information recording and information reproduction. The intermediate has a provisional central hole, which is smaller in diameter than the central mounting hole, formed in a central portion thereof. This makes it possible to drop resin in the vicinity of the center of the intermediate without using a disk-shaped member, in performing spin coating on the intermediate, whereby it is possible to make the layer of applied resin substantially uniform in thickness.
Abstract:
An optical recording medium including a light transmitting layer having a uniform thickness formed on a substrate, in which a burr or stripping hardly occurs at the inner periphery of the light transmitting layer, and a manufacturing method and a manufacturing device of the optical recording medium are provided. An optical recording medium 10 is manufactured by a manufacturing method including: molding a disc-like shaped substrate 12 including an information recording face 12A on one side; forming a light transmitting layer 14 thinner than the substrate 12 on the information recording face 12A; forming a circular cut 16 in the light transmitting layer 14; and punching out an area inside the cut 16 by a punching tool 18 to form a center hole 14A in the light transmitting layer 14 and a center hole 20 in the substrate 12.
Abstract:
An optical recording medium includes a support substrate, a first resin layer and a second resin layer formed on opposite surface sides of the support substrate, an information recording layer formed between the first resin layer and the support substrate and containing a recording film, and a moisture-proof layer formed between the second resin layer and the support substrate and the moisture-proof layer contains at least one element among elements contained in the recording film.According to the present invention, since the first resin layer is formed on the moisture-proof layer containing at least one element among elements contained in the recording film, on the information recording layer and the second resin layer is formed on the moisture-proof layer, it is possible to form the first resin layer and the second resin layer having substantially the same physical properties on the opposite sides of the support substrate and it is therefore possible to suppress the warpage of the optical recording medium due to heat and moisture to the minimum.
Abstract:
An optical recording medium includes a support substrate, a first resin layer and a second resin layer formed on opposite surface sides of the support substrate, an information recording layer formed between the first resin layer and the support substrate and containing a recording film, and a moisture-proof layer formed between the second resin layer and the support substrate and the moisture-proof layer contains at least one element among elements contained in the recording film. According to the present invention, since the first resin layer is formed on the moisture-proof layer containing at least one element among elements contained in the recording film, on the information recording layer and the second resin layer is formed on the moisture-proof layer, it is possible to form the first resin layer and the second resin layer having substantially the same physical properties on the opposite sides of the support substrate and it is therefore possible to suppress the warpage of the optical recording medium due to heat and moisture to the minimum.