摘要:
The present invention provides an exposure apparatus can suppress the occurrence of residual liquid. An exposure apparatus comprises: a first stage that holds the substrate and is movable; a second stage that is movable independently of the first stage; and a liquid immersion mechanism that forms a liquid immersion region of a liquid on an upper surface of at least one stage of the first stage and the second stage; wherein, a recovery port that is capable of recovering the liquid is provided to the upper surface of the second stage.
摘要:
The present invention provides an exposure apparatus can suppress the occurrence of residual liquid. An exposure apparatus comprises: a first stage that holds the substrate and is movable; a second stage that is movable independently of the first stage; and a liquid immersion mechanism that forms a liquid immersion region of a liquid on an upper surface of at least one stage of the first stage and the second stage; wherein, a recovery port that is capable of recovering the liquid is provided to the upper surface of the second stage.
摘要:
The present invention provides an exposure apparatus can suppress the occurrence of residual liquid. An exposure apparatus (EX) comprises: a first stage (ST1) that holds the substrate (P) and is movable; a second stage (ST2) that is movable independently of the first stage (ST1); and a liquid immersion mechanism (12, and the like) that forms a liquid immersion region (LR) of a liquid (LQ) on an upper surface of at least one stage of the first stage (ST1) and the second stage (ST2); wherein, a recovery port (51) that is capable of recovering the liquid (LQ) is provided to the upper surface of the second stage (ST2).
摘要:
The present invention provides an exposure apparatus can suppress the occurrence of residual liquid. An exposure apparatus comprises: a first stage that holds the substrate and is movable; a second stage that is movable independently of the first stage; and a liquid immersion mechanism that forms a liquid immersion region of a liquid on an upper surface of at least one stage of the first stage and the second stage; wherein, a recovery port that is capable of recovering the liquid is provided to the upper surface of the second stage.
摘要:
A lithographic apparatus includes a substrate table capable of holding a substrate, a projection system that projects a patterned beam of radiation onto the substrate held by the substrate table, and a sensor table that is not capable of holding a substrate but that includes a sensor capable of sensing a property of the patterned beam of radiation. In addition, a first positioning system is connected to the substrate table and displaces the substrate table into and out of a path of the patterned beam of radiation, and a second positioning system is capable of positioning the sensor table into the path of the patterned beam of radiation when the substrate table is displaced out of the path of the patterned beam of radiation.
摘要:
A controller measures positional information of a stage within an XY plane using three encoders which at least include one each of an X encoder and a Y encoder of an encoder system, and the stage is driven in the XY plane, based on measurement results of the positional information and positional information (p1, q1), (p2, q2), and (p3, q3) in a surface parallel to the XY plane of a head (an encoder) used for measurement of the positional information. Accordingly, it becomes possible to control the movement of the stage with good precision, while switching the head (the encoder) used for control during the movement of the stage using the encoder system which includes a plurality of heads.
摘要:
A controller inclines a movable body with respect to an XY plane at an angle α in a periodic direction of a grating, based on a measurement value of an interferometer which measures an angle of inclination of the movable body to the XY plane, and based on a measurement value of an encoder system and information of angle α before and after the inclination, and computes an Abbe offset quantity of the grating surface with respect to a reference surface (e.g., an image plane of a projection optical system) which serves as a reference for position control of the movable body in the XY plane. Then, the controller drives the movable body, based on positional information of the movable body in the XY plane measured by the encoder system and a measurement error of the encoder system corresponding to an angle of inclination of the movable body to the XY plane due to the Abbe offset quantity of the grating surface.
摘要:
Two X encoder heads (X heads) and one Y head are mounted on one wafer stage, and an X scale and a Y scale corresponding to these heads are arranged on a surface facing the wafer stage so that the scales connect the exposure area and the alignment area. The wafer stage is made to move back and forth between the exposure area and the alignment area along a path where the X scale and the Y scale are set, while performing position measurement using three encoder heads. In this case, a switching process between XZ interferometer will not be necessary.
摘要:
Because an electromagnetic chuck supplies current to a specific microcoil among a plurality of microcoils and makes an object exert an electromagnetic force working together with a magnet of the object, the object can be held in a state where the object is set at a desired position (a position that corresponds to the microcoil to which current has been supplied) on a base surface. Further, by gas that blows out from a gas supply passage, a levitation force is given to the object, which can reduce effects of a friction force that acts between the object and an upper surface of the electromagnetic chuck when the position of the object is set.
摘要:
A fine movement stage is driven by a controller, based on positional information of the fine movement stage in a measurement direction measured by a measurement system and correction information of a measurement error caused by a tilt of the fine movement stage included in the positional information. Accordingly, driving the fine movement stage with high precision becomes possible, which is not affected by a measurement error included in the positional information in a measurement direction of the measurement system that occurs due to a tilt of the fine movement stage.