Abstract:
A honeycomb panel structure is presented. The honeycomb panel structure may comprise a first panel region and a first plurality of pins welded to the first panel region. The first panel region may comprise an incline face sheet and a bottom face sheet, wherein the incline face sheet may be at an acute angle to the bottom face sheet. The honeycomb panel structure may be compressed in the first panel region, a first pin of the first plurality of pins may be perpendicular to the incline face sheet, and a second pin of the first plurality of pins may be perpendicular to the bottom face sheet.
Abstract:
A sandwich panel including a core having a first major side and an opposed second major side, the core defining cavities, a first liner sheet connected to the first major side, the first liner sheet defining apertures, wherein each aperture provides fluid communication with an associated cavity, and a bulk absorber material and/or a thermal conductor material received in at least a portion of the cavities.
Abstract:
A method for determining an actual shear angle between an interior wall and a facesheet of a cellular panel using an imaging system is disclosed. The imaging system may include a radiation source and a detector diametrically opposed to the radiation source. The method may include positioning the cellular panel at a tilt angle relative to a line extending between the radiation source and the detector, transmitting radiation from the radiation source to the detector through the cellular panel at the tilt angle to obtain an image, measuring a projected shear angle in the obtained image, and determining the actual shear angle between the interior wall and the facesheet using the tilt angle and the projected shear angle.
Abstract:
A method and system for forming a honeycomb panel structure. The method includes the steps of compressing the honeycomb panel structure in a first panel region and reinforcing the first panel region. Reinforcing the first panel region may include the steps of drilling a plurality of holes in the first panel region; inserting pins into the first panel region; and welding pins into a face sheet of the honeycomb panel structure. Alternatively, the step of reinforcing the first panel region may include the step of adding an additional face sheet to the honeycomb panel structure.
Abstract:
Methods, apparatuses and systems are disclosed for chemically etching parts by generating an enclosed chemical etching chamber in contact with a part surface and directing a flow of chemical etchant solution in contact with a part region to be etched.
Abstract:
Provided are induction heating cells including pressure bladders used for supporting dies and methods of using these induction heating cells. A pressure bladder may be disposed between a die and a bolster of the cell. Even when the bolster is deformed during operation of the cell, the pressure bladder continues to provide uniform support to the die thereby preserving integrity of the die and prevents its cracking or braking. As such, the cell may be operated at a higher processing pressure inside the cavity formed by the die without further strengthening the bolster. The bolster is allowed to deform without compromising the integrity of the die. The deformation of the bolster is compensated by the shape change of the pressure bladder. The number and/or position of the bladders in the cell may depend on the shape of processed parts.
Abstract:
A method for forming a multilayer structure from a precursor panel having an edge, the method including steps of connecting an attachment member to the precursor panel such that an edge of the attachment member is in alignment with the edge of the precursor panel and applying heat and gas pressure to expand the precursor panel.
Abstract:
A method for forming a multilayer structure from a precursor panel having an edge, the method including steps of connecting an attachment member to the precursor panel such that an edge of the attachment member is in alignment with the edge of the precursor panel and applying heat and gas pressure to expand the precursor panel.
Abstract:
A method for determining an actual shear angle between an interior wall and a facesheet of a cellular panel using an imaging system is disclosed. The imaging system may include a radiation source and a detector diametrically opposed to the radiation source. The method may include positioning the cellular panel at a tilt angle relative to a line extending between the radiation source and the detector, transmitting radiation from the radiation source to the detector through the cellular panel at the tilt angle to obtain an image, measuring a projected shear angle in the obtained image, and determining the actual shear angle between the interior wall and the facesheet using the tilt angle and the projected shear angle.
Abstract:
An apparatus for forming a panel, including a first face sheet, a second face sheet and a core sheet between the first face sheet and the second face sheet, may include a molding tool defining a forming cavity shaped to correspond to the panel, a heating system positioned adjacent to the forming cavity and configured to heat the forming cavity, and a pressurization system configured to pressurize a cavity volume between the tool and the panel and pressurize a panel volume between the first face sheet and the second face sheet.