Abstract:
A shock absorber is disclosed having a pressure tube forming a working chamber, and a piston assembly slidably disposed within the pressure tube. The piston assembly may divide the working chamber into upper and lower working chambers. The piston assembly may have a piston body defining a first fluid passage extending therethrough and a first valve assembly controlling fluid flow through the first fluid passage. A second fluid passage, separate from the first fluid passage, extends from one of the upper and lower working chambers to a fluid chamber defined at least in part by the pressure tube. A plurality of digital valve assemblies are included and configured to exclusively control all fluid flow through the second fluid passage, and thus all fluid flow between the one of the upper and lower working chambers to the fluid chamber.
Abstract:
A shock absorber for a vehicle is disclosed which has a pressure tube defining a fluid chamber, a piston rod, and a piston disposed within the fluid chamber, and carried on the piston rod, which divides the fluid chamber into upper and lower working chambers, and which has a plurality of passages extending between the upper and lower working chambers. A valve disc assembly controls a flow of fluid, and includes a spring disc. The spring disc has a non-symmetrical circumferential shape which enables a stiffness of the valve disc assembly to be tailored so that it begins to open at a first peripheral point, and continuously gradually opens about a non-symmetrical circumferential path until reaching a second peripheral point adjacent the first peripheral point.
Abstract:
A shock absorber is disclosed which has a base valve assembly for controlling a flow of a working fluid between a reservoir chamber and a working chamber of the shock absorber. The base valve makes use of at least one digital valve assembly. The digital valve assembly communicates with an intermediate chamber formed between an intermediate tube and a pressure tube of the shock absorber. The digital valve assembly controls flow of the working fluid between the intermediate chamber and the reservoir chamber, to help control a damping action provided by the shock absorber.
Abstract:
The present disclosure relates to a shock absorber having a pressure tube forming a pressure chamber. A piston rod is disposed within the pressure chamber. A reserve tube defines a reserve chamber adjacent the pressure tube. A rod guide assembly is concentrically disposed about the piston rod and the pressure chamber and houses a plurality of digital valves. Each one of the digital valves includes a component which is moveable between an open state and a closed state, and thus helps to control a fluid flow between the pressure chamber and the reserve chamber. An electronic control system is disposed on a printed circuit board assembly (PCBA) and controls actuation of the digital valves. At least one additional valve is associated with one of the digital valves for further controlling a flow of fluid between the pressure chamber and the reserve chamber.