Abstract:
An automatic focusing camera is provided with a determining device that determines a plurality of positions of a lens group or an imaging surface of a CCD for focusing on a plurality of subjects in a subject image, an AF motor that sequentially moves the lens group or the imaging surface of the CCD to the determined positions, and a shooting device that performs shootings when the lens group or the imaging surface of the CCD is at the positions.
Abstract:
Maximum and minimum aperture sizes are regulated with regard to a diaphragm in order to secure predetermined optical capability in an optical unit which includes a taking lens and the diaphragm. In normal taking, the diaphragm is used within a normal taking range from the maximum to the minimum aperture sizes. In the present invention, an aperture size which is larger than the maximum size and a size which is smaller than the minimum size (extra aperture size or extra small size) are respectively set at outside the range that secures the capability. The aperture sizes of the diaphragm at outside the specified range are used at least for one of the following: automatic exposure (AE) adjustment, auto focus (AF) adjustment, electronic zoom, displaying a moving image, taking for recording the moving image, and taking under a low resolution by thinning out pixels.
Abstract:
A producing method of producing a solid state pickup device is provided. Imaging elements are formed on a wafer in a matrix form. Each of the imaging elements has a light receiving surface and plural contact points. Receiving surface border portions are formed on a glass plate to protrude therefrom in a matrix form by etching. The receiving surface border portions are attached to the wafer to surround the light receiving surface in each of the receiving surface border portions. The light receiving surface is spaced from the glass plate. The glass plate is diced outside respectively the receiving surface border portions, to form shield glass for covering the light receiving surface. The wafer is diced for each of the imaging elements, to obtain the solid state pickup device having the shield glass and one of the imaging elements.
Abstract:
Maximum and minimum aperture sizes are regulated with regard to a diaphragm in order to secure predetermined optical capability in an optical unit which includes a taking lens and the diaphragm. In a normal taking, the diaphragm is used within a normal taking range from the maximum to the minimum aperture sizes. In the present invention, an aperture size which is larger than the maximum size and a size which is smaller than the minimum size (extra aperture size or extra small size) are respectively set at outside the range that secures the capability. The aperture sizes of the diaphragm at outside the specified range are used at least for one of the following: automatic exposure (AE) adjustment, auto focus (AF) adjustment, electronic zoom, displaying a moving image, taking for recording the moving image, and taking under a low resolution by thinning out pixels.
Abstract:
A camera consists of a first unit and a second unit removably connectable to the first unit. The first unit is provided with an imaging section including an optical system and an imaging device, that enables to capture high-quality images. The first unit is formed with a grip portion for holding and handling the camera as a combination of the first unit and the second unit. The second unit is provided with a driving device including a CPU, a lens driver circuit, a stop driver circuit and a timing generator, and a second imaging section including an optical system and an imaging device, that enables to capture relatively low-quality images. While the second unit is connected to the first unit, the driving device drives the imaging section of the first unit. While the second unit is not connected to the first unit, the driving device drives the imaging section of the second unit.
Abstract:
Maximum and minimum aperture sizes are regulated with regard to a diaphragm in order to secure predetermined optical capability in an optical unit which includes a taking lens and the diaphragm. In a normal taking, the diaphragm is used within a normal taking range from the maximum to the minimum aperture sizes. In the present invention, an aperture size which is larger than the maximum size and a size which is smaller than the minimum size (extra aperture size or extra small size) are respectively set at outside the range that secures the capability. The aperture sizes of the diaphragm at outside the specified range are used at least for one of the following: automatic exposure (AE) adjustment, auto focus (AF) adjustment, electronic zoom, displaying a moving image, taking for recording the moving image, and taking under a low resolution by thinning out pixels.
Abstract:
A producing method of producing a solid state pickup device is provided. Imaging elements are formed on a wafer in a matrix form. Each of the imaging elements has a light receiving surface and plural contact points. Receiving surface border portions are formed on a glass plate to protrude therefrom in a matrix form by etching. The receiving surface border portions are attached to the wafer to surround the light receiving surface in each of the receiving surface border portions. The light receiving surface is spaced from the glass plate. The glass plate is diced outside respectively the receiving surface border portions, to form shield glass for covering the light receiving surface. The wafer is diced for each of the imaging elements, to obtain the solid state pickup device having the shield glass and one of the imaging elements.
Abstract:
Maximum and minimum aperture sizes are regulated with regard to a diaphragm in order to secure predetermined optical capability in an optical unit which includes a taking lens and the diaphragm. In a normal taking, the diaphragm is used within a normal taking range from the maximum to the minimum aperture sizes. In the present invention, an aperture size which is larger than the maximum size and a size which is smaller than the minimum size (extra aperture size or extra small size) are respectively set at outside the range that secures the capability. The aperture sizes of the diaphragm at outside the specified range are used at least for one of the following: automatic exposure (AE) adjustment, auto focus (AF) adjustment, electronic zoom, displaying a moving image, taking for recording the moving image, and taking under a low resolution by thinning out pixels.
Abstract:
Maximum and minimum aperture sizes are regulated with regard to a diaphragm in order to secure predetermined optical capability in an optical unit which includes a taking lens and the diaphragm. In a normal taking, the diaphragm is used within a normal taking range from the maximum to the minimum aperture sizes. In the present invention, an aperture size which is larger than the maximum size and a size which is smaller than the minimum size (extra aperture size or extra small size) are respectively set at outside the range that secures the capability. The aperture sizes of the diaphragm at outside the specified range are used at least for one of the following: automatic exposure (AE) adjustment, auto focus (AF) adjustment, electronic zoom, displaying a moving image, taking for recording the moving image, and taking under a low resolution by thinning out pixels.
Abstract:
A camera consists of a first unit and a second unit removably connectable to the first unit. The first unit is provided with an imaging section including an optical system and an imaging device, that enables to capture high-quality images. The first unit is formed with a grip portion for holding and handling the camera as a combination of the first unit and the second unit. The second unit is provided with a driving device including a CPU, a lens driver circuit, a stop driver circuit and a timing generator, and a second imaging section including an optical system and an imaging device, that enables to capture relatively low-quality images. While the second unit is connected to the first unit, the driving device drives the imaging section of the first unit. While the second unit is not connected to the first unit, the driving device drives the imaging section of the second unit.