摘要:
An optical receiving apparatus includes: an A/D converting circuit; a received-signal demodulating circuit that demodulates a received digital signal from the A/D converting circuit into an m-bit received signal; a soft-decision-data generating circuit that generates n-bit (n≦m) soft-decision data based on the m-bit received signal; and an error correcting circuit that performs error correction based on the n-bit soft-decision data and outputs an error-corrected received signal. The soft-decision-data generating circuit generates soft-decision data of n bits (n=p+1) that corresponds to a determination result according to 2n−1 soft-decision thresholds, by using an MSB of the m-bit received signal as hard-decision data, and by using, as reliability information, a result of comparison between a plurality of bits (k bits, where k≦m) on an MSB side of the m-bit received signal and a fixed threshold, or p bits (p≦m−k) selected from (m−k) bits on an LSB side of the m-bit received signal.
摘要:
An optical receiving apparatus includes: an A/D converting circuit; a received-signal demodulating circuit that demodulates a received digital signal from the A/D converting circuit into an m-bit received signal; a soft-decision-data generating circuit that generates n-bit (n≦m) soft-decision data based on the m-bit received signal; and an error correcting circuit that performs error correction based on the n-bit soft-decision data and outputs an error-corrected received signal. The soft-decision-data generating circuit generates soft-decision data of n bits (n=p+1) that corresponds to a determination result according to 2n−1 soft-decision thresholds, by using an MSB of the m-bit received signal as hard-decision data, and by using, as reliability information, a result of comparison between a plurality of bits (k bits, where k≦m) on an MSB side of the m-bit received signal and a fixed threshold, or p bits (p≦m−k) selected from (m−k) bits on an LSB side of the m-bit received signal.
摘要:
An FEC frame structuring device includes a multi-lane distributing unit that distributes a data frame to be transmitted to n lanes, FEC coding units each performs FEC coding of the distributed data frame independently for each of the n lanes to generate an FEC frame, a multiplexing unit that multiplexes the FEC frame from the FEC coding units by relating to m channels of an optical signal, a demultiplexing unit that demultiplexes the m channels of the received optical signal by relating to the n lanes, FEC decoding units each performs FEC decoding of the demultiplexed FEC frame independently for each of the n lanes, and a multi-lane synchronizing unit that synchronizes the n lanes with each other after the FEC decoding performed by the FEC decoding units to reconstruct the original data frame.
摘要:
An FEC frame structuring device includes a multi-lane distributing unit that distributes a data frame to be transmitted to n lanes, FEC coding units each performs FEC coding of the distributed data frame independently for each of the n lanes to generate an FEC frame, a multiplexing unit that multiplexes the FEC frame from the FEC coding units by relating to m channels of an optical signal, a demultiplexing unit that demultiplexes the m channels of the received optical signal by relating to the n lanes, FEC decoding units each performs FEC decoding of the demultiplexed FEC frame independently for each of the n lanes, and a multi-lane synchronizing unit that synchronizes the n lanes with each other after the FEC decoding performed by the FEC decoding units to reconstruct the original data frame.
摘要:
A pre-equalization optical transmitter includes: an RZ conversion circuit for generating an RZ-type input data sequence based on an NRZ-type input data sequence and a clock that is twice the speed of the NRZ-type input data sequence; a digital filter for generating pre-equalized data by a convolution operation between the RZ-type input data sequence and a desired transfer function corresponding to the wavelength dispersion of an optical fiber transmission path; D/A converters for performing D/A conversion on the pre-equalized data to output analog pre-equalized data; and a vector modulator for modulating light from a laser light source based on the analog pre-equalized data to output an RZ-type optical signal.
摘要翻译:预均衡光发射机包括:RZ转换电路,用于基于NRZ型输入数据序列和NRZ型输入数据序列的速度的两倍的时钟产生RZ型输入数据序列; 数字滤波器,用于通过RZ型输入数据序列与对应于光纤传输路径的波长色散的期望传输函数之间的卷积运算产生预均衡数据; D / A转换器,用于对预均衡数据执行D / A转换以输出模拟预均衡数据; 以及用于基于所述模拟预均衡数据调制来自激光光源的光的矢量调制器,以输出RZ型光信号。
摘要:
The present invention includes an optical band-limiting filter which imposes a band-limitation on an input optical signal, an opto-electric converter which converts the optical signal output from the optical band-limiting filter into an electric signal, a lowpass filter which imposes the band-limitation on the electric signal output from the opto-electric converter, an amplifier which amplifies the output signal of the lowpass filter, and an electric equalizer which performs an equalization processing on a waveform of the electric signal output from the opto-electric converter are provided, and a full width at half maximum of the optical band-limiting filter is set to be equivalent to or smaller than a bit rate frequency of the optical signal.
摘要:
An optical modulation processing section is provided which, in turn, includes a signal carrier-suppressed pulse modulating unit that performs signal carrier-suppressed pulse modulation on a light source signal to thereby create a CS-RZ signal, a phase modulating unit that performs phase modulation on a data signal based on the CS-RZ signal to thereby convert the data signal to a phase-modulated signal, and an optical filtering unit that filters out redundant frequency components included in the phase modulation signal.
摘要:
In an optical transfer system, an optical transmission unit generates an optical signal in which respective polarization components are alternately present on a time axis, a time period during which the respective polarization components are simultaneously present on the time axis is substantially zero, and a symbol repetition cycle of optical signals of the respective polarization components becomes Ts, an optical reception unit causes an interference between local oscillation light and a received optical signal and converts an interfered optical signal to an electric signal, and a received electric-signal processing unit performs analog-digital conversion of an electric signal, elimination of a delay difference of Ts/2 between the respective polarized signal components, and adaptive equalization of a distortion other than the delay difference.
摘要:
An optical transmitter for converting an input data series into an optical multi-level signal and for outputting the same, includes an LUT in which data for executing optical multi-level modulation is stored and from which first modulation data and second modulation data are output based on the input data series. A DAC converts the first modulation data by D/A conversion to generate a first multi-level signal. A DAC converts the second modulation data by D/A conversion to generate a second multi-level signal. A dual-electrode MZ modulator includes a first phase modulator for modulating light from a light source in accordance with the first multi-level signal and a second phase modulator for modulating light from the light source in accordance with the second multi-level signal, and combines an optical signal from the first phase modulator and an optical signal from the second phase modulator to output the optical multi-level signal.
摘要:
Provided is a multi-value optical transmitter in which a DC bias may be controlled to be stabilized so as to obtain stable optical transmission signal quality in multi-value modulation using a dual-electrode MZ modulator. The multi-value optical transmitter includes: D/A converters for performing D/A conversion on first and second modulation data which are set based on an input data series, so as to generate a first and a second multi-value signal, respectively; a dual-electrode MZ modulator including phase modulators for modulating light from a light source based on the first multi-value signal and the second multi-value signal, so as to combine optical signals from the phase modulators to output the optical multi-value signal; an optical output power monitor for detecting average power of the optical multi-value signal; and a DC bias control unit for controlling a DC bias for the dual-electrode MZ modulator, so as to maximize the average power.