Abstract:
An optical transmission device includes a data duplicating unit that duplicates signals of each of the lanes subjected to symbol mapping and sets the number of the lanes to the number of lanes of a first number; a waveform converting unit that waveform-converts a signal that can take a value of a type of a second number into a signal that can take a value of a type of a third number larger than the second number; a polarity inverting unit that inverts polarity; a lane replacing unit that performs replacement of lanes in two or more lanes; and an optical-signal generating unit that converts electric signals of the signals of each of the lanes input from the lane replacing unit into optical signals and combines and outputs the optical signals of the lanes.
Abstract:
An optical transmitter comprises: first and second sets of optical in-phase and quadrature modulators; an integrable tunable laser assembly; a first polarization beam splitter that is configured to divide the continuous-waveform optical signal into a x-polarized tributary and a y-polarized tributary, each of the x-polarized tributary and the y-polarized tributary is modulated by one of the first and second sets of optical in-phase and quadrature modulators in accordance with the two respective input signals; a second polarization beam splitter that is configured to combine the modulated x-polarized tributary and the modulated y-polarized tributary into one optical signal; and an optical modulator that is configured to modulate the combined optical signal using a driving voltage, wherein the driving voltage has a bias point that is reduced by a predefined offset from a predefined reference voltage level.
Abstract:
A transmission device includes a transponder including an oscillator configured to oscillate a local optical laser, a wavelength controller configured to control an oscillation wavelength of the local optical laser to receive desired input signal light, and a coherent receiver configured to combine and detect the local optical laser and input signal light. A controller is configured to control the oscillation wavelength using a wavelength of the input signal light detected by the coherent receiver, to determine an erroneous connection of a signal line related to the input signal light, when the wavelength of the input signal light is not an expected wavelength.
Abstract:
An apparatus comprising a nonlinear lookup unit (NL-LUU) configured to add a phase shift to a signal sample to compensate for pattern dependent phase distortion, and one or more first phase adjustment units coupled to NL-LUU and configured to remove from the signal sample a nonlinear phase error from the NL-LUU, wherein the signal sample corresponds to a received signal polarization component of a polarization multiplexed (PM) coherent signal in a PM coherent optical system.
Abstract:
Systems and method of compensating for transmission impairment are disclosed. One such method comprises receiving a wavelength-division multiplexed optical signal. The received optical signal has been distorted in the physical domain by an optical transmission channel. The method further comprises propagating the distorted optical signal backward in the electronic domain in a corresponding virtual optical transmission channel. The backward propagation fully compensates for fiber dispersion, self-phase modulation, and cross-phase modulation (XPM) and partially compensates for four-wave mixing (FWM).
Abstract:
Provided is a coherent optical receiving apparatus and an optical signal processing method. The coherent optical receiving apparatus may include an optical hybrid unit to generate an optical signal by combining a first optical signal inputted from an optical transmitting apparatus and a second optical signal inputted from a local oscillator, a polarization demuxer to demultiplex the optical signal outputted from the optical hybridizing unit, a frequency offset compensator to estimate a frequency offset of at least one of even-numbered samples and odd-numbered samples, and to compensate for a frequency offset of the even-numbered samples and a frequency offset of the odd-numbered samples using the at least one estimated frequency offset, and a carver distortion compensator to compensate for phase distortions of the samples for which the compensation for the frequency offset is performed, the phase distortions being generated by the optical transmitting apparatus.
Abstract:
Systems and methods for optical communication that use a transmitter/receiver. The systems and methods include receiving a modulated, encoded input stream. Channel memory is reduced using coarse digital backpropagation and other channel impairments are removed using turbo equalization. Symbols are detected in the input stream that conform to a non-uniform, polar constellation having a Gaussian source distribution to produce a stream of encoded data. The stream of encoded data is decoded with one or more low density parity check (LDPC) decoders.
Abstract:
A representative optical receiver of the invention receives an optical transverse-mode-multiplexed (TMM) signal through a multimode fiber that supports a plurality of transverse modes. The optical receiver has a plurality of optical detectors operatively coupled to a digital signal processor configured to process the TMM signal to determine its modal composition. Based on the determined modal composition, the optical receiver demodulates each of the independently modulated components of the TMM signal to recover the data encoded onto the TMM signal at the remote transmitter.
Abstract:
A method for the polarization independent frequency domain equalization (FDE) chromatic dispersion compensation on polarization multiplexing (POLMUX) coherent systems. Operationally, time domain signals are converted to frequency domain signals such that time domain convolution can be done as simple multiplications in the frequency domain. These frequency domain signals then converted back to time domain for subsequent use. The input signal size and FFT size are advantageously designed so that the output signals can be continuous with some overlap between two successive frames.
Abstract:
A method includes modulating lightwaves to provide first and second OFDM signal sidebands at a first polarization direction and first and second OFDM signal sidebands at a second polarization direction, and combining sidebands that are oppositely positioned and joined from the first and second OFDM signal sidebands at each polarization direction to provide a polarization multiplexing OFDM signal.