Abstract:
A dynamic image encoding method and an apparatus therefor which apply to a hierarchical motion vector detection process using an SDRAM frame memory. A precedent process is executed sequentially for one rank of a reduced screen obtained after thinning out an input screen to memorize the result, and then a subsequent process is executed sequentially between the input screens for macro blocks of the reduced screen having provided the result of the precedent process so that the precedent and the subsequent process are repeated.
Abstract:
In a packet scheduler, an arithmetic-operation controlling means designates output ports in a time-sharing manner and a parallel arithmetic operation means performs an arithmetic operation common with the queues of each designated output port to obtain packet output completion due times (evaluation factors) of the top packets of queues of each output port. Intra-port selecting means selects the evaluation factor of a packet that is to be preferentially output for each output port based on the result of the arithmetic operations. Then inter-port selecting means determines one to be most-preferentially output from the top packets selected based on the selected evaluation factors and the bandwidths for the output ports. Therefore, an apparatus for controlling packet output having such a packet scheduler can realize accurately control bandwidths of a plurality of queues, high-speed processing and the reduced size thereby being incorporated in hardware.
Abstract:
A semiconductor device includes first, second, third, and fourth semiconductor layers of alternating first and second conductivity types, an embedded electrode in a first trench that penetrates through the second semiconductor layer, a control electrode above the embedded electrode in the first trench, and first and second main electrodes. The fourth semiconductor layer is selectively provided in the first semiconductor layer and is connected to a lower end of a second trench, which penetrates through the second semiconductor layer. The first main electrode is electrically connected to the first semiconductor layer, and the second main electrode is in the second trench and electrically connected to the second, third, and fourth semiconductor layers. The embedded electrode is electrically connected to the second main electrode or the control electrode. A Shottky junction formed of the second main electrode and the first semiconductor layer is formed at a sidewall of the second trench.
Abstract:
According to an embodiment, a semiconductor device includes a second semiconductor layer provided on a first semiconductor layer and including first pillars and second pillars. A first control electrode is provided in a trench of the second semiconductor layer and a second control electrode is provided on the second semiconductor layer and connected to the first control electrode. A first semiconductor region is provided on a surface of the second semiconductor layer except for a portion under the second control electrode. A second semiconductor region is provided on a surface of the first semiconductor region, the second semiconductor region being apart from the portion under the second control electrode and a third semiconductor region is provided on the first semiconductor region. A first major electrode is connected electrically to the first semiconductor layer and a second major electrode is connected electrically to the second and the third semiconductor region.
Abstract:
A jig for dual-side mounting PC boards is composed of a board table which has a board supporting surface, a component receiving hole and a board sucking holes, spacers for placement in the component receiving holes, and a platform having a pressure-reducing space communicating with the board sucking holes. The spacers each have a protrusion for engagement with a spacer positioning hole made in the bottom of the component receiving hole.
Abstract:
According to a multipoint link data-transmission control system, a master transmission device delivers message data via a bidirectional transmission path to a plurality of slave transmission devices, the data containing a control field for designating control data for setting or resetting a flag. The transmitting of data from the slave transmission device to the master transmission device is allowed when the flag is set, and is inhibited when the flat is reset. Where the transmitting of data from a faulty slave transmission device is to be inhibited, the master transmission device transmits the data to the faculty slave transmission device, by designating flag reset data to the control field of the message data. As a result, a transmission-enable signal, which is delivered in synchronization with a transmission-timing clock signal, is reset, thereby stopping the transmitting of data from the slave transmission device to the master transmission device.
Abstract:
A method and apparatus for automatically transmitting a message to a telephone terminal. Each message is assigned an identification code which identifies a message stored in a calling telephone. When the calling telephone calls the telephone which generated the identification code, the identified message is caused to be displayed to the calling party.
Abstract:
A manufacturing method of an electric power semiconductor device includes following processes. A plurality of first second conductivity type impurity implantation layers are formed in a surface of a second semiconductor layer of a first conductivity type. A first trench is formed between a first non-implantation region and one of the plurality of first second conductivity type impurity implantation layers. An epitaxial layer of the first conductivity type is formed and covers the plurality of first second conductivity type impurity implantation layers. A plurality of second second conductivity type impurity implantation layers are formed in a surface of the epitaxial layer. A second trench is formed between a second non-implantation region and one of the plurality of second second conductivity type impurity implantation layers. A third semiconductor layer of the first conductivity type is formed and covers the plurality of second second conductivity type impurity implantation layers.
Abstract:
A semiconductor device includes a semiconductor substrate and a plurality of gate electrodes including a part extended in a first direction in a plane parallel with the semiconductor substrate. The semiconductor substrate has a second semiconductor layer including a plurality of first conductive type pillars and second conductive type second pillars that are disposed on the first semiconductor layer, extending in the first direction in the plane parallel with the semiconductor substrate and in a third direction intersecting with a second direction orthogonal to the first direction, and arranged adjacent to each other in an alternate manner.
Abstract:
A power semiconductor device according to an embodiment includes an element portion in which MOSFET elements are provided and a termination portion provided around the element portion, and has pillar layers provided respectively in parallel to each other in a semiconductor substrate. The device includes a first trench and a first insulation film. The first trench is provided between end portions of the pillar layers, in the semiconductor substrate at the termination portion exposed from a source electrode of the MOSFET elements. The first insulation film is provided on a side surface and a bottom surface of the first trench.