Abstract:
A method of supplying a chemical solution to a photolithography system. The chemical solution is pumped from a variable-volume buffer tank. The pumped chemical solution is dispensed in a spin-coater. The variable-volume buffer tank is refilled by emptying a storage container filled with the chemical solution into the variable-volume buffer tank.
Abstract:
A photolithography system includes a variable-volume buffer tank, a dispensing system connected to the buffer tank, and a valve configured to release gas from a head space of the buffer tank while blocking the release of liquid from the head space. A storage container has an opening at the bottom and drains to the buffer tank through that opening. The buffer tank has a storage capacity sufficient to receive the full contents of the storage container. The system supplies chemical solutions to the dispensing system while keeping the chemical solutions from contact with air and other gases.
Abstract:
A photolithography system includes a variable-volume buffer tank, a dispensing system connected to the buffer tank, and a valve configured to release gas from a head space of the buffer tank while blocking the release of liquid from the head space. A storage container has an opening at the bottom and drains to the buffer tank through that opening. The buffer tank has a storage capacity sufficient to receive the full contents of the storage container. The system supplies chemical solutions to the dispensing system while keeping the chemical solutions from contact with air and other gases.
Abstract:
The present disclosure relates to a lithographic tool arrangement for semiconductor workpiece processing. The lithographic tool arrangement groups lithographic tools into clusters, and selectively transfers a semiconductor workpiece between a plurality of lithographic tools of a first type in a first cluster to a plurality of lithographic tools of a second type in a second cluster. The selective transfer is achieved though a transfer assembly, which is coupled to a defect scan tool that identifies defects generated in the lithographic tool of the first type. The disclosed lithographic tool arrangement also utilizes shared structural elements such as a housing assembly, and shared functional elements such as gases and chemicals. The lithographic tool arrangement may consist of baking, coating, exposure, and development units configured to provide a modularization of these various components in order to optimize throughput and efficiency for a given lithographic fabrication process.
Abstract:
A photolithography system includes a variable-volume buffer tank, a dispensing system connected to the buffer tank, and a valve configured to release gas from a head space of the buffer tank while blocking the release of liquid from the head space. A storage container has an opening at the bottom and drains to the buffer tank through that opening. The buffer tank has a storage capacity sufficient to receive the full contents of the storage container. The system supplies chemical solutions to the dispensing system while keeping the chemical solutions from contact with air and other gases.
Abstract:
A photolithography system includes a variable-volume buffer tank, a dispensing system connected to the buffer tank, and a valve configured to release gas from a head space of the buffer tank while blocking the release of liquid from the head space. A storage container has an opening at the bottom and drains to the buffer tank through that opening. The buffer tank has a storage capacity sufficient to receive the full contents of the storage container. The system supplies chemical solutions to the dispensing system while keeping the chemical solutions from contact with air and other gases.
Abstract:
The present disclosure relates to a lithographic tool arrangement for semiconductor workpiece processing. The lithographic tool arrangement groups lithographic tools into clusters, and selectively transfers a semiconductor workpiece between a plurality of lithographic tools of a first type in a first cluster to a plurality of lithographic tools of a second type in a second cluster. The selective transfer is achieved though a transfer assembly, which is coupled to a defect scan tool that identifies defects generated in the lithographic tool of the first type. The disclosed lithographic tool arrangement also utilizes shared structural elements such as a housing assembly, and shared functional elements such as gases and chemicals. The lithographic tool arrangement may consist of baking, coating, exposure, and development units configured to provide a modularization of these various components in order to optimize throughput and efficiency for a given lithographic fabrication process.