Abstract:
There is provided with an A/D conversion apparatus which the first terminal receives a reference voltage signal, the single-ended to differential converter conducts single-ended to differential conversion on the reference voltage signal to obtain a first differential signal, the A/D converter conducts A/D conversion on the first differential signal based on the reference voltage signal to obtain a first digital signal, the digital circuit detects a DC offset which is a difference between the first digital signal and a digital signal, the second terminal receives an input signal, the single-ended to differential converter conducts single-ended to differential conversion on the input signal to acquire a second differential signal, the A/D converter conducts A/D conversion on the second differential signal based on the reference voltage signal to acquire a second digital signal, and the digital circuit subtracts the DC offset from the second digital signal to obtain a third digital signal.
Abstract:
The SAR control circuit of the successive approximation register A/D converter changes the digital value by the first conversion frequency in a first conversion range according to the comparison result signal, and outputs the digital value.When it is determined that the sample and hold value is out of the first conversion range according to the determination signal, the range setting circuit sets a second conversion range different from the first conversion range.
Abstract:
There is provided with an A/D conversion apparatus which the first terminal receives a reference voltage signal, the single-ended to differential converter conducts single-ended to differential conversion on the reference voltage signal to obtain a first differential signal, the A/D converter conducts A/D conversion on the first differential signal based on the reference voltage signal to obtain a first digital signal, the digital circuit detects a DC offset which is a difference between the first digital signal and a digital signal, the second terminal receives an input signal, the single-ended to differential converter conducts single-ended to differential conversion on the input signal to acquire a second differential signal, the A/D converter conducts A/D conversion on the second differential signal based on the reference voltage signal to acquire a second digital signal, and the digital circuit subtracts the DC offset from the second digital signal to obtain a third digital signal.
Abstract:
A control circuit of a switching power supply device has a first current source capable of supplying an auxiliary current to a load resistance of the switching power supply device when a load current flowing through the load resistance increases, a second current source capable of pulling in a current from the load resistance when the load current flowing through the load resistance decreases, and an auxiliary current controller configured to activate the first current source or the second current source from when a variation in the load current flowing through the load resistance is detected to have exceeded a predetermined level until a current flowing through the inductor becomes equal to the current flowing through the load resistance.
Abstract:
A control circuit of a DC-DC converter has a voltage difference signal generator configured to generate a digital voltage difference signal depending on a voltage difference between the output voltage and a reference voltage, a PID controller configured to generate a digital PID signal for determining the duty ratio of the pulse-width modulated signal, based on the digital voltage difference signal, a phase controller configured to generate a digital phase control signal for determining a phase of the pulse-width modulated signal, based on the digital voltage difference signal, and a PWM generator configured to generate the pulse-width modulated signal, based on the digital PID signal and the digital phase control signal.
Abstract:
An electric vehicle may include a main battery, a charging system electronic device, an electrically powered system-based electronic device, a first high-voltage electric wire; and a second high-voltage electric wire. The electrically powered system-based electronic device and the charging system electronic device may be sequentially disposed in parallel. The electric vehicle may further include a first junction relay capable of isolating the first high-voltage electric wire; and a second junction relay capable of isolating the second high-voltage electric wire. The first junction relay is disposed between the main battery and the charging system electronic device, and a first pre-charge relay which bypasses the first junction relay is disposed in parallel with the first junction relay, and the second junction relay is disposed between the charging system electronic device and the electrically powered system-based electronic device.
Abstract:
When producing a graft modified polyolefin by melting and kneading a polyolefin, a radical-polymerizable monomer and a radical-polymerization initiator, the producing efficiency is improved. The grafting reaction is effected by feeding the melted polyolefin containing either one of said radical-polymerizable monomer and the radical-polymerization initiator to the other. When said radical-polymerizable monomer is an unsaturated carboxylic anhydride, said unsaturated carboxylic anhydride as a starting material is preliminarily heated at 50.degree. to 250.degree. C., and then fed to the grafting reaction mentioned above. When the monomer is an unsaturated carboxylic acid or an acid anhydride of such an unsaturated carboxylic acid, an organic peroxide of a formula (I) is used as the radical-polymerization initiator. ##STR1## In this formula (I), two substituting groups connected directly to the benzene ring have an ortho-positional relationship or a meta-positional relationship, R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5 and R.sub.6, which are the same as or different from one another, each denote a hydrogen atom or an alkyl group having the number of carbons of 1 to 10.
Abstract:
An air inlet is provided at the bottom of a vehicle to open downwardly. The air inlet is connected by a first tube to an air cooler for a PDU and a down converter. A fan for inputting the flow of air and turning its direction 90 degrees is connected at the downstream of the air cooler. The fan is further connected by a second tube to an exhaust outlet. The air inlet is located above a fuel tank thus to prevent any object jumping up from the road surface from straightforwardly entering the air inlet while the vehicle is running. The exhaust outlet is located above a silencer and can thus be prevented from being frozen in the winter. Using the above arrangement, the present invention embodies an air intaking and exhausting apparatus in an air cooling system for air cooling the PDU and the down converter at higher efficiency without the help of the air cooler mounted in the interior of the vehicle.
Abstract:
There are provided a resin composition having excellent wear properties and high flame retardancy, and a resin molding that results from melt molding of such composition. The resin composition is essentially comprised of: (A) a polycarbonate resin; (B) a modified polyolefin resin; (C) a compound represented by HOOC—R—NH2 where R is an alkylene, alkylidene, oligomethylene, phenylene or naphthylene group having 5 or more carbon atoms, respectively, wherein each of the phenylene and naphthylene groups may have substituent group; and (D) a specific phosphate ester.
Abstract:
A power supply apparatus includes a controller. If the controller detects that the internal resistance of a battery detected by an internal resistance detecting unit is relatively high, then the controller switches a first switch from an open state to a closed state using a first threshold value with respect to the voltage difference between a battery voltage and a system voltage, and if the controller detects that the internal resistance of the battery is relatively low, then the controller switches the first switch from the open state to the closed state using a second threshold value which is smaller than the first threshold value.