摘要:
A magnetic material according to the present disclosure includes a main phase having an R2T14B type crystal structure (R is a rare earth element and T is a transition metal element). The main phase has a composition represented by ((Nd, Pr)(1-x-y)LaxR1y))2((Fe(1-z-w)(Co, Ni)zMw))14B (where, R1 is a rare earth element other than Nd, Pr, and La, M is an element other than Fe, Co, Ni, and a rare earth element, and the like, and 0.25≤x≤1.00, 0≤y≤0.10, 0.15≤z≤0.40, and 0≤w≤0.1 are satisfied). A manufacturing method of the magnetic material according to the present disclosure includes melting a raw material containing the elements constituting the main phase and solidifying the melted raw material.
摘要:
Provided is a film formation device and a film formation method for a metallic coating that allow forming a metallic coating with a uniform film thickness. The film formation device of the present disclosure includes an anode, a solid electrolyte membrane, a power supply device, a solution container, and a pressure device. The solid electrolyte membrane is disposed between the anode and a substrate that serves as a cathode. The power supply device applies a voltage between the anode and the cathode. The solution container contains a solution between the anode and the solid electrolyte membrane. The solution contains metal ions. The pressure device pressurizes the solid electrolyte membrane to the cathode side with a fluid pressure of the solution. The film formation device further includes a shielding member disposed to surround an outer peripheral surface of the anode. The shielding member shields a line of electric force.
摘要:
A rare earth magnet having a main phase and a sub-phase, wherein the main phase has a ThMn12-type crystal structure; the sub-phase contains at least any one of an Sm5Fe17-based phase, an SmCo5-based phase, an Sm2O3-based phase, and an Sm7Cu3-based phase; assuming that the volume of the rare earth magnet is 100%, the volume fraction of the sub-phase is from 2.3 to 9.5% and the volume fraction of an α-Fe phase is 9.0% or less; and the density of the rare earth magnet is 7.0 g/cm3 or more.
摘要:
First, a patterned substrate including an insulating substrate, a conductive seed layer, and an insulating layer is prepared. The seed layer is disposed on the insulating substrate, and consists of a first part having a predetermined pattern corresponding to the wiring pattern and a second part as a part other than the first part. The insulating layer is disposed on the second part of the seed layer. Subsequently, a metal layer having a thickness larger than a thickness of the insulating layer is formed on the first part of the seed layer. Here, a voltage is applied between an anode and the seed layer while a resin film containing a metal ion-containing solution is disposed between the patterned substrate and the anode and the resin film and the seed layer are brought into pressure contact. Subsequently, the insulating layer and the second part of the seed layer are removed.
摘要:
Provided is an electromagnetic wave transmitting heater that has excellent heating properties and is capable of suppressing an increase in a cross section of a heater wire. The electromagnetic wave transmitting heater includes a plurality of heater wires disposed at intervals to allow transmission of electromagnetic waves, a pair of lateral wires, one of the pair of lateral wires being coupled to one end of each of the heater wires, another one of the pair of lateral wires being coupled to another end of each of the heater wires, and a pair of coupling wires, one of the pair of coupling wires being coupled to one of the pair of lateral wires, another one of the pair of coupling wires being coupled to another one of the pair of lateral wires. The lateral wires each have a cross section larger than a cross section of each of the heater wires.
摘要:
A pre-chamber is formed between the front end of a spark plug (15) attached to the cylinder head (3) and a thin pre-chamber wall (11) sticking out from the inside wall surface of the cylinder head (3) to the inside of a main combustion chamber (5). The communication holes (13) communicating the inside of the sub chamber (12) and the inside of the main combustion chamber (5) are formed inside the thin pre-chamber wall (11). The thin pre-chamber wall (11) is formed into a shape with a cross-sectional area gradually decreasing from the inside wall surface of the cylinder head (3) toward the inside of the main combustion chamber (5) such as a conical shape, frustoconical shape, polygonal conical shape, or polygonal frustoconical shape. A ground side electrode portion of the spark plug (15) is positioned inside the gas pocket (18), and a discharge is caused between the center electrode (19) sticking out from the front end of the center electrode insulator (17) and the ground side electrode portion at the time of ignition.
摘要:
A method for producing magnetic powder for forming a sintered body that is a precursor of a rare-earth magnet. Provided is a method for producing magnetic powder for forming a sintered body that is a precursor of a rare-earth magnet, which can produce magnetic powder with a structure containing optimal nanosized crystal grains by accurately and efficiently sorting out magnetic powder containing no coarse grains in the structure thereof. A method for producing magnetic powder p for forming a sintered body S that is a precursor of a rare-earth magnet, the sintered body S including an Nd—Fe—B-based main phase with a nanocrystalline structure, and a grain boundary phase around the main phase, and the rare-earth magnet being adapted to be formed by applying hot deformation processing to the sintered body S for imparting anisotropy thereto and diffusing an alloy for improving coercivity therein, the method including discharging a metal melt onto a chill roll R to produce a quenched ribbon B, and grinding the quenched ribbon B into grains in the size range of 50 to 1000 μm to produce magnetic powder in the mass range of 0.0003 to 03 mg; conducting a test to see whether or not the magnetic powder in the mass range adsorbs onto a magnet with a surface magnetic flux density of 2 mT or less, and sorting out magnetic powder p that has not adsorbed onto the magnet, as the magnetic powder for forming the sintered body S.
摘要:
A method for manufacturing a wiring board in which the adhesion between an underlayer and a seed layer is improved. A diffusion layer in which an element forming the underlayer and an element forming a coating layer are mutually diffused is formed between the underlayer and a wiring portion of the coating layer by irradiating the wiring portion with a laser beam. A seed layer is formed by removing a portion excluding the wiring portion of the coating layer from the underlayer. A metal layer is formed by disposing a solid electrolyte membrane between an anode and the seed layer and applying voltage between the anode and the underlayer. An exposed portion without the seed layer of the underlayer is removed from an insulating substrate.
摘要:
A rare earth magnet in which the amount used of a heavy rare earth element is more reduced while maintaining enhancement of the coercive force, and a producing method thereof are provided. The rare earth magnet of the present disclosure has a main phase 10 and a grain boundary phase 20. The main phase 10 has a composition represented by R12T14B. The main phase 10 has a core part 12 and a shell part 14. Denoting the abundances of R2 and Ce (R2 is heavy rare earth element) occupying 4f site of the shell part 14 as R24f and Ce4f, respectively, and denoting the abundances of R2 and Ce occupying 4g site of the shell part 14 as R24g and Ce4g, respectively, the rare earth magnet satisfies 0.44≤R24g/(R24f+R24g)≤0.70 and 0.04≤(Ce4f+Ce4g)/(R24f+R24g). The rare earth magnet-producing method of the present disclosure uses a modifier containing at least R2 and Ce.
摘要:
A present disclosure relates to a metallic film manufacturing method including a first step of forming a layer which has functional groups ion-exchangeable with metal ions on a surface of a resin substrate made of an insulating material, a second step of treating the resin substrate having the layer with a metal ion solution such that metal ions are introduced into the layer by ion exchange, and a third step of treating the resin substrate with a reducing agent such that metal particles are precipitated on a surface of the layer. The present disclosure relates to a metallic film manufacturing method a metallic film in which there are voids between metal particles precipitated on a surface of the metallic film, and the average particle diameter of the metal particles is 5 nm to 200 nm.