Abstract:
A method and an apparatus for training a voiceprint recognition system are provided. The method includes obtaining a voice training data set comprising voice segments of users; determining identity vectors of all the voice segments; identifying identity vectors of voice segments of a same user in the determined identity vectors; placing the recognized identity vectors of the same user in the users into one of user categories; and determining an identity vector in the user category as a first identity vector. The method further includes normalizing the first identity vector by using a normalization matrix, a first value being a sum of similarity degrees between the first identity vector in the corresponding category and other identity vectors in the corresponding category; training the normalization matrix, and outputting a training value of the normalization matrix when the normalization matrix maximizes a sum of first values of all the user categories.
Abstract:
A voice data processing method and apparatus are provided. The method includes obtaining an I-Vector vector of each of voice samples, and determining a target seed sample in the voice samples. A first cosine distance is calculated between an I-Vector vector of the target seed sample and an I-Vector vector of a target remaining voice sample, where the target remaining voice sample is a voice sample other than the target seed sample in the voice samples. A target voice sample is filtered from the voice samples or the target remaining voice sample according to the first cosine distance, to obtain a target voice sample whose first cosine distance is greater than a first threshold.
Abstract:
A sign-in method and server based on facial recognition are provided. The method includes: receiving a face image of a sign-in user from a sign-in terminal. According to the face image of the sign-in user, whether a target registration user matching the sign-in user exists in a pre-stored registration set is detected. The registration set includes a face image of at least one registration user. Further, the target registration user is confirmed as signed in successfully if the target registration user exists in the registration set.
Abstract:
The embodiment of the present invention provides a human face recognition method and recognition system. The method includes that: a human face recognition request is acquired, and a statement is randomly generated according to the human face recognition request; audio data and video data returned by a user in response to the statement are acquired; corresponding voice information is acquired according to the audio data; corresponding lip movement information is acquired according to the video data; and when the lip movement information and the voice information satisfy a preset rule, the human face recognition request is permitted. By performing fit goodness matching between the lip movement information and voice information in a video for dynamic human face recognition, an attack by human face recognition with a real photo may be effectively avoided, and higher security is achieved.
Abstract:
Face model matrix training method, apparatus, and storage medium are provided. The method includes: obtaining a face image library, the face image library including k groups of face images, and each group of face images including at least one face image of at least one person, k>2, and k being an integer; separately parsing each group of the k groups of face images, and calculating a first matrix and a second matrix according to parsing results, the first matrix being an intra-group covariance matrix of facial features of each group of face images, and the second matrix being an inter-group covariance matrix of facial features of the k groups of face images; and training face model matrices according to the first matrix and the second matrix.
Abstract:
The present disclosure pertains to the field of image processing technologies and discloses a face key point positioning method and a terminal. The method includes: obtaining a face image; recognizing a face frame in the face image; determining positions of n key points of a target face in the face frame according to the face frame and a first positioning algorithm; performing screening to select, from candidate faces, a similar face whose positions of corresponding key points match the positions of the n key points of the target face; and determining positions of m key points of the similar face selected through screening according to a second positioning algorithm, m being a positive integer. In this way, the problem that positions of key points obtained by a terminal have relatively great deviations in the related technologies is resolved, thereby achieving an effect of improving accuracy of positioned positions of the key points.
Abstract:
A method for implementing a graphic rendering engine may be provided. In the method, rendering function information of a first graphic processing interface and a second graphic processing interface may be extracted. The first graphic processing interface and the second graphic processing interface may be encapsulated as a graphic rendering engine interface. Member functions of the graphic rendering engine interface may be defined according to the rendering function information. A rendering function corresponding to the member functions may be implemented by calling the first graphic processing interface or the second graphic processing interface with the graphic rendering engine interface.
Abstract:
An action recognition method includes: obtaining original feature submaps of each of temporal frames on a plurality of convolutional channels by using a multi-channel convolutional layer; calculating, by using each of the temporal frames as a target temporal frame, motion information weights of the target temporal frame on the convolutional channels according to original feature submaps of the target temporal frame and original feature submaps of a next temporal frame, and obtaining motion information feature maps of the target temporal frame on the convolutional channels according to the motion information weights; performing temporal convolution on the motion information feature maps of the target temporal frame to obtain temporal motion feature maps of the target temporal frame; and recognizing an action type of a moving object in image data of the target temporal frame according to the temporal motion feature maps of the target temporal frame on the convolutional channels.
Abstract:
This present disclosure describes a video image processing method and apparatus, a computer-readable medium and an electronic device, relating to the field of image processing technologies. The method includes determining, by a device, a target-object region in a current frame in a video. The device includes a memory storing instructions and a processor in communication with the memory. The method also includes determining, by the device, a target-object tracking image in a next frame and corresponding to the target-object region; and sequentially performing, by the device, a plurality of sets of convolution processing on the target-object tracking image to determine a target-object region in the next frame. A quantity of convolutions of a first set of convolution processing in the plurality of sets of convolution processing is less than a quantity of convolutions of any other set of convolution processing.
Abstract:
The present disclosure discloses an image recognition method and apparatus, and belongs to the field of computer technologies. The method includes: extracting a local binary pattern (LBP) feature vector of a target image; calculating a high-dimensional feature vector of the target image according to the LBP feature vector; obtaining a training matrix, the training matrix being a matrix obtained by training images in an image library by using a joint Bayesian algorithm; and recognizing the target image according to the high-dimensional feature vector of the target image and the training matrix. The image recognition method and apparatus according to the present disclosure may combine LBP algorithm with a joint Bayesian algorithm to perform recognition, thereby improving the accuracy of image recognition.