Model generating method, and speech synthesis method and apparatus

    公开(公告)号:US10832652B2

    公开(公告)日:2020-11-10

    申请号:US16318889

    申请日:2017-08-14

    Abstract: A method is performed by at least one processor, and includes acquiring training speech data by concatenating speech segments having a lowest target cost among candidate concatenation solutions, and extracting training speech segments of a first annotation type, from the training speech data, the first annotation type being used for annotating that a speech continuity of a respective one of the training speech segments is superior to a preset condition. The method further includes calculating a mean dissimilarity matrix, based on neighboring candidate speech segments corresponding to the training speech segments before concatenation, the mean dissimilarity matrix representing a mean dissimilarity in acoustic features of groups of the neighboring candidate speech segments belonging to a same type of concatenation combination relationship, and generating a concatenation cost model having a target concatenation weight, based on the mean dissimilarity matrix, the concatenation cost model corresponding to the same type of concatenation combination relationship.

    IDENTITY VECTOR PROCESSING METHOD AND COMPUTER DEVICE

    公开(公告)号:US20180233151A1

    公开(公告)日:2018-08-16

    申请号:US15954416

    申请日:2018-04-16

    CPC classification number: G10L17/20 G10L17/02 G10L17/08

    Abstract: Processing circuitry of an information processing apparatus obtains a set of identity vectors that are calculated according to voice samples from speakers. The identity vectors are classified into speaker classes respectively corresponding to the speakers. The processing circuitry selects, from the identity vectors, first subsets of interclass neighboring identity vectors respectively corresponding to the identity vectors and second subsets of intraclass neighboring identity vectors respectively corresponding to the identity vectors. The processing circuitry determines an interclass difference based on the first subsets of interclass neighboring identity vectors and the corresponding identity vectors; and determines an intraclass difference based on the second subsets of intraclass neighboring identify vectors and the corresponding identity vectors. Further, the processing circuitry determines a set of basis vectors to maximize a projection of the interclass difference on the basis vectors and to minimize a projection of the intraclass difference on the basis vectors.

    Method and apparatus for training voiceprint recognition system

    公开(公告)号:US10854207B2

    公开(公告)日:2020-12-01

    申请号:US16231913

    申请日:2018-12-24

    Abstract: A method and an apparatus for training a voiceprint recognition system are provided. The method includes obtaining a voice training data set comprising voice segments of users; determining identity vectors of all the voice segments; identifying identity vectors of voice segments of a same user in the determined identity vectors; placing the recognized identity vectors of the same user in the users into one of user categories; and determining an identity vector in the user category as a first identity vector. The method further includes normalizing the first identity vector by using a normalization matrix, a first value being a sum of similarity degrees between the first identity vector in the corresponding category and other identity vectors in the corresponding category; training the normalization matrix, and outputting a training value of the normalization matrix when the normalization matrix maximizes a sum of first values of all the user categories.

    Identity vector processing method and computer device

    公开(公告)号:US10650830B2

    公开(公告)日:2020-05-12

    申请号:US15954416

    申请日:2018-04-16

    Abstract: Processing circuitry of an information processing apparatus obtains a set of identity vectors that are calculated according to voice samples from speakers. The identity vectors are classified into speaker classes respectively corresponding to the speakers. The processing circuitry selects, from the identity vectors, first subsets of interclass neighboring identity vectors respectively corresponding to the identity vectors and second subsets of intraclass neighboring identity vectors respectively corresponding to the identity vectors. The processing circuitry determines an interclass difference based on the first subsets of interclass neighboring identity vectors and the corresponding identity vectors; and determines an intraclass difference based on the second subsets of intraclass neighboring identify vectors and the corresponding identity vectors. Further, the processing circuitry determines a set of basis vectors to maximize a projection of the interclass difference on the basis vectors and to minimize a projection of the intraclass difference on the basis vectors.

Patent Agency Ranking