Abstract:
A system 10 for controlling a drilling operation by a drill rig 12 includes a receiver 16 for receiving sensed data related to the drilling operation. A processor 18 is in communication with the receiver 16, the processor 18 processing the sensed data to estimate at least one geological property of interest of a zone 20 in which the drill rig 12 is active. The processor 18 is configured to operate as a decision engine 22 to optimize the drilling operation automatically by changing at least one drilling related parameter during the drilling operation based on the at least one geological property of interest.
Abstract:
A system 10 for controlling a drilling operation by a drill rig 12 includes a receiver 16 for receiving sensed data related to the drilling operation. A processor 18 is in communication with the receiver 16, the processor 18 processing the sensed data to estimate at least one geological property of interest of a zone 20 in which the drill rig 12 is active. The processor 18 is configured to operate as a decision engine 22 to optimize the drilling operation automatically by changing at least one drilling related parameter during the drilling operation based on the at least one geological property of interest.
Abstract:
A system 10 for controlling operation of a vehicle 12 in a defined area 14 includes a perimeter 16 defining a boundary of the defined area 14. A user interface 18 is provided for at least one of controlling and monitoring movement of the vehicle 12 as it traverses the area 14 and monitoring the location of the vehicle 12 relative to the perimeter 16. The system 10 further includes a controller 26 to which the vehicle 12 is responsive, the vehicle 12 having a plurality of modes of operation, one of which is an autonomous mode and another of which is an operator controlled mode. The controller 26 is operative, when the vehicle 12 is operating in the autonomous mode and the vehicle comes within a predetermined range of the perimeter, to inhibit the vehicle 12 from crossing the perimeter 16 and, when the vehicle 12 is operating in the operator controlled mode or is converted from autonomous mode to operator controlled mode, to permit the vehicle 12 to cross the perimeter 16 under control of the operator.
Abstract:
A system 10 for controlling operation of a vehicle 12 in a defined area 14 includes a perimeter 16 defining a boundary of the defined area 14. A user interface 18 is provided for at least one of controlling and monitoring movement of the vehicle 12 as it traverses the area 14 and monitoring the location of the vehicle 12 relative to the perimeter 16. The system 10 further includes a controller 26 to which the vehicle 12 is responsive, the vehicle 12 having a plurality of modes of operation, one of which is an autonomous mode and another of which is an operator controlled mode. The controller 26 is operative, when the vehicle 12 is operating in the autonomous mode and the vehicle comes within a predetermined range of the perimeter, to inhibit the vehicle 12 from crossing the perimeter 16 and, when the vehicle 12 is operating in the operator controlled mode or is converted from autonomous mode to operator controlled mode, to permit the vehicle 12 to cross the perimeter 16 under control of the operator.
Abstract:
A system 10 for controlling a drilling operation by a drill rig 12 includes a receiver 16 for receiving sensed data related to the drilling operation. A processor 18 is in communication with the receiver 16, the processor 18 processing the sensed data to estimate at least one geological property of interest of a zone 20 in which the drill rig 12 is active. The processor 18 is configured to operate as a decision engine 22 to optimize the drilling operation automatically by changing at least one drilling related parameter during the drilling operation based on the at least one geological property of interest.
Abstract:
A surveying system 10 includes a data storage system 12 containing survey data defining a terrain model 14 of a region 16. A processor module 18 is configured to interrogate the data storage system 12 automatically to assess characteristics of the survey data to determine whether or not the survey data require updating and to provide instructions automatically to scanning equipment 26, 28 to scan the region 16 to provide updated survey data to the processor module 18 to enable the processor module 18 to update the terrain model 14.
Abstract:
A surveying system 10 includes a data storage system 12 containing survey data defining a terrain model 14 of a region 16. A processor module 18 is configured to interrogate the data storage system 12 automatically to assess characteristics of the survey data to determine whether or not the survey data require updating and to provide instructions automatically to scanning equipment 26, 28 to scan the region 16 to provide updated survey data to the processor module 18 to enable the processor module 18 to update the terrain model 14.
Abstract:
A system 10 for controlling a drilling operation by a drill rig 12 includes a receiver 16 for receiving sensed data related to the drilling operation. A processor 18 is in communication with the receiver 16, the processor 18 processing the sensed data to estimate at least one geological property of interest of a zone 20 in which the drill rig 12 is active. The processor 18 is configured to operate as a decision engine 22 to optimize the drilling operation automatically by changing at least one drilling related parameter during the drilling operation based on the at least one geological property of interest.
Abstract:
A system for drilling to a position relative to a geological boundary in a geological formation includes a sensor pack for sensing parameters associated with a drilling operation carried out in the geological formation by a drill. A data storage module stores a geological model of the geological formation and data relating to the sensed parameters, including data relating to the geological boundary. A processor module monitors the drilling operation using the sensed parameters data to locate the position of a drill bit of the drill in the geological formation and its corresponding position within the geological model. The processor module generates an end point at a defined position relative to the geological boundary. A drill controller communicates with the processor module, the drill controller controlling operation of the drill to cause the drill to cease drilling when the end point has been reached.
Abstract:
A system 10 for controlling operation of a vehicle 12 in a defined area 14 includes a perimeter 16 defining a boundary of the defined area 14. A user interface 18 is provided for at least one of controlling and monitoring movement of the vehicle 12 as it traverses the area 14 and monitoring the location of the vehicle 12 relative to the perimeter 16. The system 10 further includes a controller 26 to which the vehicle 12 is responsive, the vehicle 12 having a plurality of modes of operation, one of which is an autonomous mode and another of which is an operator controlled mode. The controller 26 is operative, when the vehicle 12 is operating in the autonomous mode and the vehicle comes within a predetermined range of the perimeter, to inhibit the vehicle 12 from crossing the perimeter 16 and, when the vehicle 12 is operating in the operator controlled mode or is converted from autonomous mode to operator controlled mode, to permit the vehicle 12 to cross the perimeter 16 under control of the operator.