Abstract:
A coil component includes a substrate, a planar spiral conductor formed on a top surface of the substrate, a lead conductor connected to an outer peripheral end of the planar spiral conductor, a dummy lead conductor formed on the top surface of the substrate between an outermost turn of the planar spiral conductor and an end of the substrate and free from an electrical connection with another conductor within the same plane, external electrodes and arranged in parallel with the top surface of the substrate, and a bump electrode formed on a surface of the lead conductor and connects the lead conductor with the external electrode. The external terminals have a larger area than the bump electrodes for securing a bonding strength.
Abstract:
Disclosed herein is a coil component that includes an insulating layer formed on a substrate, a coil conductor provided between the substrate and the insulting layer, a first electrode connected to one end of the coil conductor, a second electrode connected to the other end of the coil conductor, and a magnetic layer formed on the insulting layer so as to cover a side surface of each of the first and second electrodes without covering a top surface of each of the first and second electrodes.
Abstract:
A coil component 1 is provided with coil conductors 10a and 10b and a magnetic metal powder containing resin 22 (22a and 22b) covering the coil conductors 10a and 10b. The magnetic metal powder containing resin 22 includes first metal powder having a first average grain diameter, second metal powder having a second average grain diameter that is smaller than the first average grain diameter, and third metal powder having a third average grain diameter that is smaller than the second average grain diameter. The first average grain diameter is 15 μm or more and 100 μm or less. The third average grain diameter is 2 μm or less. The first metal powder mainly contains Permalloy and the second and third metal powders mainly contain carbonyl iron.
Abstract:
In a planar coil element, the quantitative ratio of inclined particles to total particles of a first metal magnetic powder contained in a metal magnetic powder-containing resin provided in a through hole of a coil unit is higher than the quantitative ratio of inclined particles to total particles of the first metal magnetic powder contained in the metal magnetic powder-containing resin provided in other than the through hole, and many of particles of the first metal magnetic powder in the magnetic core are inclined particles whose major axes are inclined with respect to the thickness direction and the planar direction of a substrate. Therefore, the planar coil element has improved strength as compared to a planar coil element shown in FIG. 9A and has improved magnetic permeability as compared to a planar coil element shown in FIG. 9B.
Abstract:
Disclosed herein is a coil component that includes first and second magnetic members; a coil layer arranged between the first and second magnetic members, the coil layer including a plurality of conductor layers and a plurality of non-magnetic insulating layers, the conductor layers and the non-magnetic insulating layers being alternately laminated, the conductor layers being connected to each other via through holes formed in the non-magnetic insulating layers to form a coil pattern; a first external terminal covering one end of the coil pattern exposed to at least one of side surfaces of the coil layer without covering the first and second magnetic members; and a second external terminal covering other end of the coil pattern exposed to at least one of the side surfaces of the coil layer without covering the first and second magnetic members.
Abstract:
Disclosed herein is a coil component that includes: a coil part in which a plurality of conductor layers and a plurality of interlayer insulting layers are alternately laminated, the coil part having a mounting surface substantially parallel to the lamination direction and an upper surface substantially parallel to the lamination direction and positioned on an opposite side to the mounting surface; and a direction mark comprising a conductive material that covers a part of the conductor layers exposed on the upper surface.
Abstract:
In a planar coil element and a method for producing the same, a metal magnetic powder-containing resin containing an oblate or needle-like first metal magnetic powder contains a second metal magnetic powder having an average particle size (1 μm) smaller than that (32 μm) of the first metal magnetic powder, which significantly reduces the viscosity of the metal magnetic powder-containing resin. Therefore, the metal magnetic powder-containing resin is easy to handle when applied to enclose a coil unit, which makes it easy to produce the planar coil element.
Abstract:
A laminated composite electronic device has a circuit including a coil and a capacitor within a laminate having a plurality of conductor layers laminated with an insulating layer interposed between the respective ones of the conductor layers. The device includes a coil conductor arranged on a first conductor layer and forming part of the coil, and a pair of capacitor electrodes for forming the capacitor, one of which is arranged on a second conductor layer such that the one capacitor electrode laps over the coil conductor when viewed from a laminating direction of the laminate, wherein the coil conductor forms part of the coil, and simultaneously serves as the other of the pair of capacitor electrode for forming part of the capacitor.
Abstract:
A coil component 1 is provided with coil conductors 10a and 10b and a magnetic metal powder containing resin 22 (22a and 22b) covering the coil conductors 10a and 10b. The magnetic metal powder containing resin 22 includes first metal powder having a first average grain diameter, second metal powder having a second average grain diameter that is smaller than the first average grain diameter, and third metal powder having a third average grain diameter that is smaller than the second average grain diameter. The first average grain diameter is 15 μm or more and 100 μm or less. The third average grain diameter is 2 μm or less. The first metal powder mainly contains Permalloy and the second and third metal powders mainly contain carbonyl iron.
Abstract:
A coil component 1 includes a substrate 2, a planar spiral conductor 10a formed on a top surface 2t of the substrate 2, a lead conductor 11a connected to an outer peripheral end of the planar spiral conductor 10a, a dummy lead conductor 15a formed on the top surface of the substrate 2 and between an outermost turn of the planar spiral conductor 10a and an end 2X2 of the substrate 2 and free from an electrical connection with another conductor within the same plane, external electrodes 26a and 26b arranged in parallel with the top surface of the substrate 2, and a bump electrode 25a formed on a surface of the lead conductor 11a and connects the lead conductor 11a with the external electrode 26a. The external terminals 26a and 26b have a larger area than the bump electrodes 15a and 15b for securing a bonding strength.