Abstract:
A magneto-resistive effect element (MR element) has an upper shield that is magnetized in a cross track direction, a lower shield that is positioned at an interval relative to the upper shield in a down track direction, and a multilayer film that is positioned between the upper shield and the lower shield and that faces an air bearing surface (ABS). The multilayer film has a free layer where its magnetization direction fluctuates relative to an external magnetic field, a pinned layer where its magnetization direction is pinned against the external magnetic field, a nonmagnetic spacer layer that is positioned between the free layer and the pinned layer, and an insulating layer that is positioned at a back side of the free layer viewed from the ABS. The MR element further has a pair of side shields that are positioned at both sides of the free layer and the insulating layer in a cross track direction. The side shields contact the upper shield on the sides of the free layer and the insulating layer in the cross track direction.
Abstract:
An MR element suppressing a false writing into a medium with an MR part has a CPP structure. The MR part includes a nonmagnetic intermediate layer and first and second ferromagnetic layers so as to interpose the nonmagnetic intermediate layer. First and second shield layers respectively have an inclining magnetization structure of which a magnetization is inclined with regard to a track width direction. The first and second ferromagnetic layers are respectively, magnetically coupled with the first and second shield layers. A magnetization direction adjustment layer for adjusting at least a magnetization direction of the first ferromagnetic layer is positioned at a rear end surface side of the first ferromagnetic layer, which is opposite to a front end surface receiving a magnetic field detected in the MR part.
Abstract:
A triaxial magnetic sensor that can detect with high precision magnetic fields in three axial directions comprises a substrate having a first surface and a second surface opposite the first surface, and a magnetic sensor element group provided on the first surface. The magnetic sensor element group includes a first magnetic sensor element for magnetic detection in the x-axis direction, a second magnetic sensor element for magnetic detection in the y-axis direction and a third magnetic sensor element for magnetic detection in the z-axis direction. The first through third magnetic sensor elements respectively contain first through third magneto-resistive effect elements composed of laminated bodies including at least a magnetization fixed layer and a free layer, and the magnetization direction of each of the magnetization fixed layers of the first through third magneto-resistive elements is fixed in a direction inclined at a prescribed angle with respect to the first surface.
Abstract:
A magneto-resistive effect element (MR element) has a first shield layer; a second shield layer; an inner shield layer that is positioned between the first shield layer and the second shield layer, and that makes contact with the first shield layer and faces the air bearing surface (ABS); and a multilayer film that is positioned between the first shield layer and the second shield layer. The multilayer film has a free layer; a first pinned layer; a nonmagnetic spacer layer; a second pinned layer that fixes the magnetization direction of the first pinned layer; and an antiferromagnetic layer that is exchange-coupled with the second pinned layer. The antiferromagnetic layer faces the back surface of the inner shield layer viewed from the ABS. The MR element has an insulating layer positioned between the antiferromagnetic layer and the inner shield layer.
Abstract:
A magnetic sensor comprising a resin layer having a first surface and a second surface, which is opposite to the first surface and a magnetoresistive effect unit that detects a magnetic field in a predetermined direction, wherein the magnetoresistive effect unit includes at least a first magnetoresistive effect unit that detects a magnetic field in a first direction, the first direction is a direction orthogonal to the first surface of the resin layer, an inclined surface that is inclined at a predetermined angle with respect to the first surface is formed in the first surface of the resin layer, and the first magnetoresistive effect unit is formed in the inclined surface.
Abstract:
A magnetoresistive element has a magnetization free layer whose magnetization direction changes in an external magnetic field; a magnetization pinned layer whose magnetization direction is pinned in the external magnetic field; and a barrier layer that is positioned between the magnetization free layer and the magnetization pinned layer and that exhibits a magnetoresistive effect. The barrier layer is an oxide of an alloy that includes Mg and Al, and the barrier layer includes a crystalline region and a non-crystalline region.
Abstract:
A magnetoresistive element has a magnetization free layer whose magnetization direction changes in an external magnetic field; a magnetization pinned layer whose magnetization direction is pinned in the external magnetic field; and a barrier layer that is positioned between the magnetization free layer and the magnetization pinned layer and that exhibits a magnetoresistive effect. The barrier layer is an oxide of an alloy that includes Mg and Al, and the barrier layer includes a crystalline region and a non-crystalline region.
Abstract:
A magneto-resistive effect element has a first shield layer, a second layer, and a multilayer film that is positioned between the first shield layer and the second shield layer. The multilayer film has a free layer, a first pinned layer, a nonmagnetic spacer layer, a second pinned layer that fixes a magnetization direction of the first pinned layer, and an antiferromagnetic layer that is exchange-coupled with the second pinned layer. The antiferromagnetic layer is positioned away from an air bearing surface (ABS). The second pinned layer has a first part that is positioned away from the ABS, and a second part that makes contact with the first part, and that extends to the ABS parallel to the first pinned layer; and the first part has a first layer that makes contact with the antiferromagnetic layer, a second layer that makes contact with the second part, and a layer that is positioned between the first layer and the second layer, and that exchange-couples the first layer and the second layer in an anti-parallel orientation.
Abstract:
A thin film magnetic head includes a spin valve film that includes a magnetization free layer, a magnetization pinned layer and a non-magnetic spacer layer that is disposed between the magnetization free and pinned layers, and a pair of side layers that are disposed at both sides of the spin valve film in a track width direction and at least in the vicinity of the magnetization free layer and the magnetization pinned layer. Each of the side layers has a bias magnetic field application layer that includes a soft magnetic layer and applies a bias magnetic field in the track width direction to the magnetization free layer, and a gap layer that is positioned between the spin valve film and the bias magnetic field application layer, and the side layers have compression stresses at least in the vicinity of the magnetization pinned layer.
Abstract:
A magnetoresistive effect element that prevents a recording medium from deteriorating by effectively inhibiting erroneous writing to a medium or the like includes a magnetoresistive effect part, and an upper shield layer and a lower shield layer that are laminated and formed in a manner sandwiching the magnetoresistive effect part from above and below, and is in a current perpendicular to plane (CPP) structure in which a sense current is applied in a lamination direction. The magnetoresistive effect part includes a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer that sandwich the nonmagnetic intermediate layer from above and below, the upper shield layer and the lower shield layer have inclined magnetization structures in which magnetizations of them are respectively inclined with respect to a track width direction, the magnetizations of the upper shield layer and the lower shield layer are mutually substantially orthogonal, the first ferromagnetic layer is indirectly magnetically coupled with the upper shield layer via a first exchange coupling function gap layer that is positioned between the first ferromagnetic layer and the upper shield layer, and the second ferromagnetic layer is indirectly magnetically coupled with the lower shield layer via a second exchange coupling function gap layer that is positioned between the second ferromagnetic layer and the lower shield layer.