摘要:
This disclosure provides methods, devices, and systems for low-light imaging. The present implementations more specifically relate to selecting images that can be used for training a neural network to infer denoised representations of images captured in low light conditions. In some aspects, a machine learning system may obtain a series of images of a given scene, where each of the images is associated with a different SNR (representing a unique combination of exposure and gain settings). The machine learning system may identify a number of saturated pixels in each image and classify each of the images as a saturated image or a non-saturated image based on the number of saturated pixels. The machine learning system may then select the non-saturated image with the highest SNR as the ground truth image, and the non-saturated images with lower SNRs as the input images, to be used for training the neural network.
摘要:
Embodiments described herein include a method for operating an input device by applying a charge voltage to a sense element through a first transistor that is between the sense element and a column output line and a first switch that is between the column output line and a drive voltage. The method also includes storing an electric charge on the sense element, wherein the electric charge comprises a magnitude corresponding to a feature of an input object. The method also includes driving a gate terminal of the first transistor low and disconnecting the charge voltage via the first switch. The method further includes transferring the electric charge to a feedback capacitor.
摘要:
An input device comprises a first plurality of sensor electrodes, a second plurality of sensor electrodes, and a processing system. The processing system comprises a first integrated circuit, a second integrated circuit, and a central controller. The first integrated circuit is coupled to the first plurality of sensor electrodes and configured to receive first resulting signals therewith. The second integrated circuit is coupled to the second plurality of sensor electrodes and configured to receive second resulting signals therewith. The central controller is communicatively coupled to the first and second integrated circuits. The central controller is configured to receive the first resulting signals from the first integrated circuit and the second resulting signals from the second integrated circuit and is configured to determine positional information from the first resulting signals and the second resulting signals and to communicate the positional information to a host processor.
摘要:
The embodiments herein are generally directed to using a current-mode CBC circuit to maintain a voltage bias setting at a receiver when performing capacitive sensing. To do so, the CBC circuit may compensate for the change in voltage at a receiver by providing a current at the input of the receiver. Instead of using a passive CBC capacitor for each receiver, the input device may use a single CBC capacitor and a plurality of current mirrors to source and sink the current required to correct the input voltage at a plurality of receivers. As a result, the current-mode CBC circuit includes only one passive capacitor (or bank of capacitors) and a plurality of current mirrors which may provide space and cost benefits relative to a CBC circuit that uses a passive capacitor (or bank of capacitors) for each receiver channel.
摘要:
A processing system for a transcapacitive sensing device comprises a plurality of sensor electrodes sectioned by a seam, a first sensor electrode integrated circuit, and a second sensor electrode integrated circuit. The plurality of sensor electrodes comprises a plurality of transmitter electrodes intersecting a plurality of receiver electrodes. The first sensor electrode integrated circuit is communicatively coupled to a first subset of the plurality of sensor electrodes. The second sensor electrode integrated circuit is communicatively coupled to a second subset of the plurality of sensor electrodes. The first sensor electrode integrated circuit and the second sensor electrode integrated circuit are configured to operate the plurality of sensor electrodes in synchrony to transmit with the plurality of transmitter electrodes a set of transmitter signals and receive with the plurality of receiver electrodes a set of responses corresponding to the set of transmitter signals.
摘要:
A processing system that includes a sigma-delta converter and a filter unit that applies a matched filter to the output of the sigma-delta converter. The processing system drives sensor electrodes for capacitive sensing and receives resulting signals with the sensor electrodes in response. The processing system applies these resulting signals to sigma-delta converters. The matched filter boosts the signal-to-noise ratio of the signal received from the sigma-delta converter, thereby improving the ability to sense presence of an input object. The filter unit may apply different, customized matched filters for different capacitive pixels to improve the signal-to-noise ratio of each capacitive pixel in a customized manner.
摘要:
A processing system for an optical sensing device may comprise receiver circuitry and a determination module. The processing system may also include drive circuitry configured to drive a light source to emit light. The receiver circuitry is coupled to a photodetector, and the receiver circuitry is configured to acquire a resulting signal from the photodetector, and generate a measurement of light received by the photodetector based on the resulting signal. The receiver circuitry includes high-pass filter circuitry configured to high-pass filter the resulting signal to generate a high-pass filtered signal based. The determination module is configured to generate a light measurement based on the high-pass filtered signal.
摘要:
This disclosure generally provides a system, active input device, and method for generating an amplified square wave signal based on an input signal. The method comprises generating a pulse signal based on the input signal, and driving a switching signal based on the pulse signal to control a first switch. A pulse width of the pulse signal is adaptively controlled using a control signal generated based on the amplified square wave signal. An output terminal of the first switch is coupled with a second switch, and the switching signal controls current entering into the second switch. The method further comprises driving the input signal to control a third switch coupled with the second switch. The amplified square wave signal is generated at the second output terminal based on the switching signal and on the input signal.
摘要:
Embodiments of the present invention generally provide a method of input sensing with a sensor electrode. The method includes driving an input sensing signal to charge the sensor electrode and sampling a first voltage associated with the sensor electrode. The method further includes removing charge from the sensor electrode when the first voltage is above a threshold voltage, adding charge to the sensor electrode when the first voltage is below the threshold voltage, determining a number of times charge is removed from the sensor electrode, and determining a number of times charge is added to the sensor electrode. The method further includes determining positional information based on the number of times charge is removed from the sensor electrode and the number of times charge is added to the sensor electrode.
摘要:
Embodiments herein describe an input device that includes a rectangular array of sensor electrodes connected to sensor modules that measure capacitive sensing signals corresponding to the electrodes. When performing code division multiplexing (CDM), multiple sensor electrodes are coupled to the same sensor module. As such, the sensor module generates a measurement that represents the sum of the charges on the sensor electrodes rather than an individual charge on a single sensor electrode. By repeatedly sensing multiple sensor electrodes in parallel, the input device can determine a change of capacitance for each individual sensor electrode.