Abstract:
A digital television (TV) receiver using a vestigial sideband (VSB) system, and timing recovering apparatus and method for the digital TV receiver are disclosed. The timing error can be compensated for by rapidly and accurately searching the position of the segment sync signal using the Hilbert filter even if the strong 2-symbol-delayed ghost is applied. Also, the tracking performance for the timing error and the zitter performance can be improved by extracting the timing error information even from the signal having passed through the Hilbert filter.
Abstract:
An apparatus and method for detecting a synchronizing signal in a digital TV receiver which adopts a VSB mode is disclosed. The apparatus includes a correlation unit for obtaining a correlation value between a received signal for each unit of symbols and a preset reference field synchronizing signal, a maximum value detector for detecting a location of the symbol having a maximum correlation value while performing counting operation for a unit of a variable constant added to the number of symbols corresponding to one field, a synchronizing lock signal generator for generating a synchronizing lock signal by testing reliability of the symbol location detected by the maximum value detector, and a synchronizing location controller for calculating a relative location of the symbol location having a maximum value to generate a corresponding synchronizing signal if the synchronizing lock signal is generated by the synchronizing lock signal generator. A synchronizing pattern is traced per field in even case that channel characteristic is seriously varied. Thus, the synchronizing signals are stably restored at high speed.
Abstract:
A VSB reception system includes a sequence generator for decoding a symbol corresponding to the supplemental data and generating a predefined sequence included in the supplemental data at VSB transmission system. The reception system also includes a modified legacy VSB receiver for processing the data received from the VSB transmission system in a reverse order of the VSB transmission system by using the sequence, and a demultiplexer for demultiplexing the data from the modified legacy VSB receiver into the MPEG data and the supplemental data. The VSB reception system also includes a supplemental data processor for processing the supplemental data segment from the demultiplexer in a reverse order of the transmission system, to obtain the supplemental data, thereby carrying out the slicer prediction, decoding, and symbol decision more accurately by using the predefined sequence, to improve a performance.
Abstract:
A method and an apparatus for improving power efficiency of a User Equipment (UE) by using channel state information between a Node B and the UE and power headroom information of the UE in a mobile communication system. The method includes acquiring power information in relation to transmission powers of UEs; arranging the UEs in a sequence based on the power information; determining, for each UE according to the arranged sequence, whether a first reception power of a Node B exceeds a second reception power; allocating a resource area including partially consecutive sub-carriers to at least one corresponding UE when the first reception power exceeds the second reception power; allocating a resource area including entirely consecutive sub-carriers to at least one corresponding UE when the first reception power does not exceed the second reception power; and transmitting resource allocation information indicating the allocated resource area to the each UE.
Abstract:
A VSB reception system includes a sequence generator for decoding a symbol corresponding to the supplemental data and generating a predefined sequence included in the supplemental data at VSB transmission system. The reception system also includes a modified legacy VSB receiver for processing the data received from the VSB transmission system in a reverse order of the VSB transmission system by using the sequence, and a demultiplexer for demultiplexing the data from the modified legacy VSB receiver into the MPEG data and the supplemental data. The VSB reception system also includes a supplemental data processor for processing the supplemental data segment from the demultiplexer in a reverse order of the transmission system, to obtain the supplemental data, thereby carrying out the slicer prediction, decoding, and symbol decision more accurately by using the predefined sequence, to improve a performance.
Abstract:
A VSB reception system includes a sequence generator for decoding a symbol corresponding to the supplemental data and generating a predefined sequence included in the supplemental data at VSB transmission system. The reception system also includes a modified legacy VSB receiver for processing the data received from the VSB transmission system in a reverse order of the VSB transmission system by using the sequence, and a demultiplexer for demultiplexing the data from the modified legacy VSB receiver into the MPEG data and the supplemental data. The VSB reception system also includes a supplemental data processor for processing the supplemental data segment from the demultiplexer in a reverse order of the transmission system, to obtain the supplemental data, thereby carrying out the slicer prediction, decoding, and symbol decision more accurately by using the predefined sequence, to improve a performance.
Abstract:
A VSB communication system comprises a VSB transmission system and a VSB reception system. The VSB transmission system multiplexes a coded MPEG data and a coded supplemental data having a null sequence inserted therein, with required multiplexing information included in a field synchronization signal or in a supplemental data according to a number of the supplemental data packets being transmitted. The VSB reception system detects the required multiplexing information from the field synchronization signal or the supplemental data and decodes the multiplexed data by using the null sequence and the detected multiplexing information, as well as demultiplexes the multiplexed data into the MPEG data and the supplemental data.
Abstract:
A VSB communication system comprises a VSB transmission system and a VSB reception system. The VSB transmission system multiplexes a coded MPEG data and a coded supplemental data having a null sequence inserted therein, with required multiplexing information included in a field synchronization signal or in a supplemental data according to a number of the supplemental data packets being transmitted. The VSB reception system detects the required multiplexing information from the field synchronization signal or the supplemental data and decodes the multiplexed data by using the null sequence and the detected multiplexing information, as well as demultiplexes the multiplexed data into the MPEG data and the supplemental data.
Abstract:
A VSB communication system comprises a VSB transmission system and a VSB reception system. The VSB transmission system multiplexes a coded MPEG data and a coded supplemental data having a null sequence inserted therein, with required multiplexing information included in a field synchronization signal or in a supplemental data according to a number of the supplemental data packets being transmitted. The VSB reception system detects the required multiplexing information from the field synchronization signal or the supplemental data and decodes the multiplexed data by using the null sequence and the detected multiplexing information, as well as demultiplexes the multiplexed data into the MPEG data and the supplemental data.
Abstract:
A VSB communication system or transmitter for processing supplemental data packets with MPEG-II data-packets includes a VSB supplemental data processor and a VSB transmission system. The VSB supplemental data processor includes a Reed-Solomon coder for coding the supplemental data to be transmitted, a null sequence inserter for inserting a null sequence to an interleaved supplemental data for generating a predefined sequence, a header inserter for inserting an MPEG header to the supplemental data having the null sequence inserted therein, a multiplexer for multiplexing an MPEG data coded with the supplemental data having the MPEG header added thereto in a preset multiplexing ratio and units. The output of the multiplexer is provided to an 8T-VSB transmission system for modulating a data field from the multiplexer and transmitting the modulated data field to a VSB reception system.