Abstract:
This power conversion device includes: a power conversion unit 20 provided between a DC power supply 2 and an AC electric path 3 and configured to perform DC/AC power conversion; and a control unit 14 configured to control the power conversion unit 20. The control unit 14 includes a determination unit 25 configured to determine whether or not a starting current has flowed through the AC electric path 3, and an adjustment unit 26 configured to adjust an AC voltage generated by the power conversion unit 20, on the basis of a result of the determination by the determination unit 25.
Abstract:
A power storage device according to an aspect of the present disclosure includes: a casing including a bottom wall and a top wall opposite to the bottom wall; a storage battery; an electrical unit; and a cooling unit. The storage battery is disposed in the casing and separated from the bottom wall. The electrical unit is disposed in the casing and located closer to the top wall than the storage battery is. A first fan is disposed between the storage battery and the electrical unit and configured to direct air from the storage battery toward the electrical unit.
Abstract:
An inverter device includes a circuit configuration for converting, to AC power, DC powers respectively given from a first power supply and a second power supply which outputs power with voltage lower than that of the first power supply. The inverter device includes: a first step-up circuit; a second step-up circuit; an inverter circuit connected to both step-up circuits connected in parallel to each other, the inverter circuit configured to convert powers given from both step-up circuits to AC power; and a control unit configured to multiply a power value including the AC power outputted from the inverter circuit, by a ratio of a power value of the DC power of each step-up circuit to a total power value obtained by summing the DC powers of both step-up circuits, and set a current target value for each step-up circuit based on a value obtained by the multiplication.
Abstract:
This power conversion system is composed of a DC power supply circuit and a power conditioner which are connected to each other. The power conditioner includes: a first DC/DC converter provided between the DC power supply circuit and a DC bus; and an inverter provided between the DC bus and an AC electric path and configured to perform switching operation in such a manner that the inverter and the first DC/DC converter alternately have stop periods in an AC half cycle. The DC power supply circuit includes: a storage battery; and a second DC/DC converter of a bidirectional type, provided between the storage battery and the first DC/DC converter and including a DC reactor. The power conversion system includes a control unit configured to control current flowing through the DC reactor of the second DC/DC converter to have a constant value.
Abstract:
This power supply device includes: an AC path from an input end to an output end; a current sensor configured to detect a current flowing through the AC path; a conversion unit connected to the AC path and being capable of bidirectional power conversion; a storage battery connected to the AC path via the conversion unit; an AC switch provided between the input end and a point at which the conversion unit is connected to the AC path, the AC switch including parallel body of a relay contact and a semiconductor switch; and a control unit configured to control the conversion unit and the AC switch. When the control unit executes a current conduction mode for the first time, and when the current sensor detects an excessive current during the current conduction mode, the control unit closes only the relay contact while keeping the semiconductor switch opened.
Abstract:
A power conversion device includes a switch connected to an AC system; an AC/DC converter; and a DC/DC converter. A control unit compares an absolute value of an AC voltage target value based on the AC voltage with a DC voltage target value based on the storage battery voltage, and executes, on the basis of a magnitude relation of the values, a control method such that a period during which step-up operation is performed through switching operation mainly using one of the AC/DC converter and the DC/DC converter, and a period during which step-down operation is performed through switching operation mainly using the other one of the converters, alternately arise. When starting charging/discharging of the storage battery, the control unit causes the switch to close at zero cross timing of the AC voltage, and thereafter, causes charging/discharging to start from the switching operation through which the step-down operation is performed.
Abstract:
Provided is a power conversion device including: a conversion device for each phase which converts DC voltage inputted from a DC power supply, to voltage having an AC waveform to be outputted to each phase with respect to a neutral point of three-phase AC; and a control unit which controls these conversion devices. Each conversion device includes: a first converter which has a DC/DC converter including an isolation transformer, and a capacitor, and which converts the inputted DC voltage to voltage containing a pulsating DC voltage waveform corresponding to the absolute value of the AC waveform to be outputted; and a second converter which is provided at a stage subsequent to the first converter and has a full-bridge inverter, and which inverts the polarity of the voltage containing the pulsating DC voltage waveform, per one cycle, thereby converting the voltage to voltage having the AC waveform.
Abstract:
Provided is a conversion device that converts DC power provided from a DC power supply, to AC power and supplies the AC power to a load, the conversion device including: a filter circuit connected to the load and including an AC reactor and a first capacitor; a DC/AC inverter connected to the load via the filter circuit; a DC/DC converter provided between the DC power supply and the DC/AC inverter; a second capacitor provided between the DC/AC inverter and the DC/DC converter; and a control unit configured to set a current target value for the DC/DC converter to thereby be synchronized with current of the AC power, based on voltage of the AC power, voltage variation due to current flowing through the AC reactor and an impedance thereof, reactive currents respectively flowing through the first capacitor and the second capacitor, and voltage of the DC power.
Abstract:
A power conversion device provided between a DC power supply and an AC electric path, including: a breaking device provided to at least one line of an output electric path in the power conversion device; a first voltage sensor provided on a primary side of the breaking device; a second voltage sensor provided on a secondary side of the breaking device; and a determination unit which calculates a primary-side voltage and a secondary-side voltage, and a primary-side phase and a secondary-side phase and determines that the breaking device is opened, by occurrence of an event in which an absolute value of a voltage difference between the primary-side voltage and the secondary-side voltage is greater than a voltage difference threshold value and an absolute value of a phase difference between the primary-side phase and the secondary-side phase is greater than a phase difference threshold value.
Abstract:
This power supply device includes: a power interconnection path connecting a power interconnection port to a power conversion unit via a first switch; a stand-alone power supply path leading from an auxiliary input port via a second switch to an output port to which a load is connected; a storage-battery-side power supply path leading from a storage battery via the power conversion unit to the output port; and a control unit, the control unit causing the power conversion unit to charge/discharge the storage battery when interconnected with a commercial power grid, the control unit supplying power to the load via one of the stand-alone power supply path and the storage-battery-side power supply path when disconnected from the commercial power grid, the control unit switching the power supply path from the one to the other within an extremely short time period such as not to influence the load.