Abstract:
Manifold for a medical/surgical waste collection assembly. A shell includes a proximal end base, and a lip extending proximally from the proximal end base. The lip extends around an outlet opening defined in the proximal end base that is off-centered to a longitudinal axis of the shell. A cap including a cap head is coupled to a side wall of the shell. A drip stop may be seated within a space defined by the lip to cover the outlet opening. An arcuate section of the lip may be flush with an adjacent section of the side wall. The cap head may define a through hole, and a flapper valve unit may be coupled to the cap head with another component having ears extending through the through hole. A fence may extend from the cap head and configured to be grasped by a user.
Abstract:
A specimen collection cassette for a medical fluid collection system. A housing defines a first void space and a second void space, and an outlet opening in fluid communication with the first and second void spaces. An aperture may be within a wall separating the first and second void spaces with the aperture providing fluid communication between the first and second void spaces. First and second fittings receive a suction line for drawing fluid into the first and second void spaces, respectively. A fluid communication path is established from the first fitting to the outlet opening through the first void space, aperture, and the second void space, and a bypass fluid communication path is established from the second bore to the outlet opening through the second void space. The cassette is operable in one or both of a tissue sample collection mode and a bypass mode.
Abstract:
A surgical waste collection unit with a receiver for removably holding a manifold to which suction lines are connected. The receiver is mounted to the waste collection unit to be at an acute angle relative to the horizontal. The receiver is further configured to allow the manifold to be rotated in the receiver. This means the manifold can be rotated from a first position in which the manifold outlet opening is aligned with the conduit through which waste is flowed from the receiver and a second position in which the manifold outlet opening is elevated relative to the first position.
Abstract:
A surgical waste collection unit with a receiver for removably holding a manifold to which suction lines are connected. The receiver is mounted to the waste collection unit to be at an acute angle relative to the horizontal. The receiver is further configured to allow the manifold to be rotated in the receiver. This means the manifold can be rotated from a first position in which the manifold outlet opening is aligned with the conduit through which waste is flowed from the receiver and a second position in which the manifold outlet opening is elevated relative to the first position.
Abstract:
Methods of assembling a manifold for a medical waste collection system. A flapper valve unit is secured to a head of a cap. A filter element is positioned within a shell. Basket hands of the filter element are fitted between first pairs of ribs of the cap skirt. Fingers of the shell are fitted between second pairs of ribs of the cap skirt. The cap is secured to the shell to cover an open distal end of the shell. A drip stop is secured to the proximal end base of the shell to seat within the outlet opening. Ears may be fitted through holes defined by the flapper valve unit and cap holes defined by the cap so as to snap lock to the head of the cap. The hub of the flapper valve unit may be compressed with the ears snap locked to the head of the cap.
Abstract:
A manifold apparatus and method of opening a valve in a medical/surgical waste collection unit. The manifold includes a base at a proximal end with the base defining an opening off center from an axis of the manifold. The manifold further includes two arcuately spaced tabs, each subtending arcs having different arcuate lengths. The manifold is positioned such that the tabs mate with at least two slots of a lock ring of the waste collection unit so as to cause the opening of the manifold to be, upon insertion into a bore of the waste collection unit, in a specific rotational alignment in the bore. The manifold is rotated within the bore to cause a valve disk to move between a first position in which the valve disk blocks fluid flow through the receiver and a second position in which the valve disk allows fluid flow through the receiver.
Abstract:
A specimen collection cassette for a medical fluid collection system. A housing defines a first void space and a second void space, and an outlet opening in fluid communication with the first and second void spaces. An aperture may be within a wall separating the first and second void spaces with the aperture providing fluid communication between the first and second void spaces. First and second fittings receive a suction line for drawing fluid into the first and second void spaces, respectively. A fluid communication path is established from the first fitting to the outlet opening through the first void space, aperture, and the second void space, and a bypass fluid communication path is established from the second bore to the outlet opening through the second void space. The cassette is operable in one or both of a tissue sample collection mode and a bypass mode.
Abstract:
A surgical waste collection unit with a receiver for removably holding a manifold to which suction lines are connected. The receiver is mounted to the waste collection unit to be at an acute angle relative to the horizontal. The receiver is further configured to allow the manifold to be rotated in the receiver. This means the manifold can be rotated from a first position in which the manifold outlet opening is aligned with the conduit through which waste is flowed from the receiver and a second position in which the manifold outlet opening is elevated relative to the first position.
Abstract:
A removable manifold for a medical/surgical waste collection system. The manifold is dimensioned to be mounted to a receiver integral with the system. The manifold includes a includes at least one fitting through which waste is drawn into the manifold. The fitting opens through an inlet port into a void space internal to the manifold. A backflow prevention valve is disposed in the manifold void space. The backflow prevention valve includes a static hub to which a driver for engaging a complementary valve internal to the receiver. The valve regulates flow between the receiver and the down line components of the waste collection system. The valve is normally closed. When the manifold is fitted to the receiver the driver engages the valve so as move the valve to the open position. This allows fluid flow from the manifold and receiver to the downstream components of the system.
Abstract:
A smoke evacuator that draws smoke generated during a medical surgical procedure away from the site at which the smoke is generated. The smoke evacuator includes a pump that draws air into a filter. A sensor internal to the filter monitors the smoke in the air stream drawn through the filter. Normally the pump runs at a low speed, a speed sufficient to draw some air in the filter. When the sensor detects the presence of an appreciable amount of smoke in the air stream the sensor sends a signal indicating the air stream is in this state to the pump controller. The controller then increases the pump speed to result in a like increase in the volume of air drawn through the smoke evacuator. Since the sensor is contained in the filter, a new sensor is installed in the system each time a new filter is installed.