Abstract:
A radar system and method is provided, in which the radar system includes a first transmitting portion of antenna elements, a second transmitting portion of antenna elements, and a receiving portion of antenna elements, such that the receiving antenna elements form a plurality of subarrays that represent real and synthetic antenna elements. The radar system further includes a transceiving device having a switching matrix. At least first and second switching transmit antenna elements are configured and time-multiplexed, wherein a receive aperture of the receiving antenna elements is increased. A first signal transmitted is received by the real antenna elements and a second signal transmitted is received by the real antenna elements, and combined so that the signals received from the first switching transmit antenna element represents a signal received by the real receive antenna element, and the signal received from the second switching transmit antenna element represents a signal received by the synthetic receive antenna element.
Abstract:
A radar system and method is provided, in which the radar system includes a first transmitting portion of antenna elements, a second transmitting portion of antenna elements, and a receiving portion of antenna elements, such that the receiving antenna elements form a plurality of subarrays that represent real and synthetic antenna elements. The radar system further includes a transceiving device having a switching matrix. At least first and second switching transmit antenna elements are configured and time-multiplexed, wherein a receive aperture of the receiving antenna elements is increased. A first signal transmitted is received by the real antenna elements and a second signal transmitted is received by the real antenna elements, and combined so that the signals received from the first switching transmit antenna element represents a signal received by the real receive antenna element, and the signal received from the second switching transmit antenna element represents a signal received by the synthetic receive antenna element.
Abstract:
A tri-sensor track association based on ranked candidate pairs and measures of their proximity is described. The track association employs a three dimensional assignment scheme, simple enough to be implemented in real-time, which preserves the most accurate pairwise links of the highest ranked pairs, requires at least two pairwise links for any tri-sensor global track association, and minimizes the time average statistical bearing displacement between associated tracks.
Abstract:
A tri-sensor track association based on ranked candidate pairs and measures of their proximity is described. The track association employs a three dimensional assignment scheme, simple enough to be implemented in real-time, which preserves the most accurate pairwise links of the highest ranked pairs, requires at least two pairwise links for any tri-sensor global track association, and minimizes the time average statistical bearing displacement between associated tracks.
Abstract:
Digital beamforming is provided for use with electronically scanned radar. In an aspect, the present invention provides enhanced sensitivity, wide angle or field of view (FOV) coverage with narrow beams, minimized number of receivers, reduced sidelobes, eliminated grating lobes and beam compensation for target motion. In an aspect, the present invention employs a uniform overlapped subarray feed network, a time multiplexed switch matrix, and a restructured digital signal processor. Antenna channels share a receiver, rather than maintain a dedicated receiver for each antenna element, as in conventional systems. In an aspect, Doppler/frequency filtering is performed on each antenna element or subarray output prior to digital beamforming. Further, Doppler compensation is employed following Doppler/frequency filtering, followed by digital beamforming.
Abstract:
An integrated radar-camera sensor is provided which includes a camera sensor component and a radar sensor component both housed within a common single module housing. The sensor module also includes processing circuitry for processing the radar sensor and camera outputs. The sensor module is located behind the windshield of a vehicle and may include glare and/or EMI shields.
Abstract:
An antenna formed of multiple sub-arrays, each having rows of interconnected radiating elements. One row of radiating elements is shared between two sub-arrays by a coupler which isolatingly couples one row of radiating elements to each of two sub-arrays allowing the feed to the two sub-arrays to be isolatingly applied to the shared row of radiating elements while suppressing grating lobe generation and providing high sub-array isolation.
Abstract:
A system, controller, antenna, and method for detecting obstruction and misalignment of a ground vehicle radar having an antenna configured to detect objects in a first direction characterized as being substantially parallel to a horizontal plane about the ground vehicle, and detect objects in a second direction characterized as being toward a roadway surface proximate to the ground vehicle. The second direction radar return from the roadway is expected to have certain characteristics. If the characteristics are outside of a predetermined window, then obstruction and/or misalignment of the first direction and the second direction is likely, and so the radar may not reliably detect an object in the first direction, such as a vehicle in an adjacent lane.
Abstract:
An integrated radar-camera sensor is provided which includes a camera sensor component and a radar sensor component both housed within a common single module housing. The sensor module also includes processing circuitry for processing the radar sensor and camera outputs. The sensor module is located behind the windshield of a vehicle and may include glare and/or EMI shields.
Abstract:
An antenna formed of multiple sub-arrays, each having rows of interconnected radiating elements. One row of radiating elements is shared between two sub-arrays by a coupler which isolatingly couples one row of radiating elements to each of two sub-arrays allowing the feed to the two sub-arrays to be isolatingly applied to the shared row of radiating elements while suppressing grating lobe generation and providing high sub-array isolation.