摘要:
A block transform-based digital media codec efficiently compresses digital media data using block patterns representing whether a block's coefficients are zero-valued, such that their explicit encoding is skipped. Because the block patterns can have widely varying probability distributions, the codec adaptively chooses a prediction mode for modifying the block patterns (e.g., based on spatial prediction, or inverting) to enhance their compression using entropy coding techniques. Further, with high spatial correlation of block patterns, the codec encodes a meta block pattern for a region indicating whether all block patterns of the region represent zero-valued coefficient blocks. In such cases, the codec can then also omit explicitly encoding the block patterns in those regions.
摘要:
Rules for the signaling and interpretation of chroma position are described. One rule, called the short rule, defines fifteen discrete chroma centering positions and corresponding four-bit syntax element. Another rule, called the extended rule, defines 81 discrete chroma centering positions and corresponding seven-bit syntax elements. A described method includes receiving digital media data at a digital media encoder, determining chroma position information for the received digital media data, and representing the chroma position information with one or more syntax elements in an encoded bitstream. The one or more syntax elements are operable to communicate the chroma position information to a digital media decoder. The chroma position information facilitates an image rotation or flip.
摘要:
Techniques and tools are described for scalable video encoding and decoding. In some embodiments, an encoding tool encodes base layer video and outputs encoded base layer video in a base layer bit stream. The encoding tool encodes inter-layer residual video (representing differences between input video and reconstructed base layer video) using motion compensation relative to previously reconstructed inter-layer residual video. For the inter-layer residual video, the encoding tool outputs motion information and motion-compensated prediction residuals in an enhancement layer bit stream. A decoding tool receives the base layer bit stream and enhancement layer bit stream, reconstructs base layer video, reconstructs inter-layer residual video, and combines the reconstructed base layer video and reconstructed inter-layer residual video. Using motion compensation for the inter-layer residual video facilitates the use of separate motion vectors and separate codecs for the base layer video and inter-layer residual video.
摘要:
A block transform-based digital media codec has a signaling scheme and bitstream syntax to flexibly signal that truncation of less significant information bits of transform coefficients coded as an optional layer of the bitstream has been performed adaptively per region or tile of the image.
摘要:
A block transform-based digital media codec efficiently compresses digital media data using block patterns representing whether a block's coefficients are zero- valued, such that their explicit encoding is skipped. Because the block patterns can have widely varying probability distributions, the codec adaptively chooses a prediction mode for modifying the block patterns (e.g., based on spatial prediction, or inverting) to enhance their compression using entropy coding techniques. Further, with high spatial correlation of block patterns, the codec encodes a meta block pattern for a region indicating whether all block patterns of the region represent zero-valued coefficient blocks. In such cases, the codec can then also omit explicitly encoding the block patterns in those regions.
摘要:
In certain embodiments, to eliminate DC leakage into surrounding AC values, scaling stage within a photo overlap transform operator is modified such that the off-diagonal elements of the associated scaling matrix have the values of 0. In certain embodiments, the on-diagonal scaling matrix are given the values (0.5, 2). In some embodiments, the scaling is performed using a combination of reversible modulo arithmetic and lifting steps. In yet other embodiments, amount of DC leakage is estimated at the encoder, and preprocessing occurs to mitigate amount of leakage, with the bitstream signaling that preprocessing has occurred. A decoder may then read the signal and use the information to mitigate DC leakage.
摘要:
In certain embodiments, to eliminate DC leakage into surrounding AC values, scaling stage within a photo overlap transform operator is modified such that the off-diagonal elements of the associated scaling matrix have the values of 0. In certain embodiments, the on-diagonal scaling matrix are given the values (0.5, 2). In some embodiments, the scaling is performed using a combination of reversible modulo arithmetic and lifting steps. In yet other embodiments, amount of DC leakage is estimated at the encoder, and preprocessing occurs to mitigate amount of leakage, with the bitstream signaling that preprocessing has occurred. A decoder may then read the signal and use the information to mitigate DC leakage.
摘要:
Rules for the signaling and interpretation of chroma position are described. One rule, called the short rule, defines fifteen discrete chroma centering positions and corresponding four-bit syntax element. Another rule, called the extended rule, defines 81 discrete chroma centering positions and corresponding seven-bit syntax elements. A described method includes receiving digital media data at a digital media encoder, determining chroma position information for the received digital media data, and representing the chroma position information with one or more syntax elements in an encoded bitstream. The one or more syntax elements are operable to communicate the chroma position information to a digital media decoder. The chroma position information facilitates an image rotation or flip.
摘要:
Techniques and tools are described for scalable video encoding and decoding. In some embodiments, an input frame is downsampled in terms of sample depth and chroma sampling rate, encoded, and output from the encoder as a base layer bitstream. The base layer bitstream is also reconstructed and upsampled to produce a reconstructed bitstream which is subtracted from the original input frame to produce a residual layer. The residual layer is split and encoded as a sample depth residual layer bitstream and a chroma high-pass residual layer bitstream. To recover the encoded input frame, a decoder receives one or more of these bitstreams, decodes them, and combines them to form a reconstructed image. The use of separate codecs is allowed for the base layer and the enhancement layers, without inter-layer dependencies.
摘要:
A digital media encoder/decoder includes signaling of various modes relating to computation complexity and precision at decoding. The encoder may send a syntax element indicating arithmetic precision (e.g., using 16 or 32-bit operations) of the transform operations performed at decoding. The encoder also may signal whether to apply scaling at the decoder output, which permits a wider dynamic range of intermediate data at decoding, but adds to computational complexity due to the scaling operation.