Abstract:
A core logic chipset for a computer system is provided which can be configured as a bridge between either an accelerated graphics port (AGP) bus or an additional peripheral component interconnect (PCI) bus. A common bus having provisions for the PCI and AGP interface signals is connected to the core logic chipset and either an AGP or PCI device(s). The common bus, which is part of a fault-tolerant interconnect system, includes a first bus portion and a lower bus portion. When an error (e.g., a parity error) is detected on the first bus portion, the transaction is transferred over the second bus portion. When an error is detected on the second bus portion, the transaction is transferred over the first bus portion. If errors are detected on both portions, the transaction may be terminated.
Abstract:
A computer system includes multiple controllers that assist in executing the Power-On Self Test (POST) sequence to minimize the time required to complete system initialization. By shifting some of the responsibilities for executing the POST sequence to other controllers within the system, the testing and initialization of system devices can proceed concurrently. The controllers interface with peripheral devices, and include a register set that includes command information for initializing the testing and initialization of associated peripherals. The register set also includes dedicated bits for indicating the status of testing and initialization cycles, which can be read by the CPU to determine if testing or initialization is in progress, if it has completed, and if any errors have occurred. The register set also includes a configuration register for indicating configuration information and operating parameters of the initialized drive or peripheral. By distributing the testing and initialization responsibilities to the controllers, execution of the BIOS system software or system initialization software can be expedited, thus minimizing down time caused by initializing the computer system.
Abstract:
The specification discloses a method and related system that allows hardware devices to participate in the coherency domain of a computer system. More particularly, hardware devices such as network interface cards, audio cards, input/output cards, and the like, are allowed to participate on at least a limited basis in the coherency domain by having cache memory that duplicates a FIFO buffer in main memory used to exchange information between software and the hardware. To exchange information, software writes to the FIFO buffer which invalidates the data in the cache-type memory of the hardware device, and the invalidation message acts to notify the hardware device of the availability of information in the FIFO buffer.
Abstract:
A computer system and method in which an electrically controlled “hoodlock,” which prevents the computer's chassis from unauthorized opening, can be remotely accessed through powerline communications.
Abstract:
A computer-system includes a memory bus, a connector and a controller. The connector is configured to receive a memory module and prevent removal of the memory module from the connector in a first state. The connector allows removal of the memory module from the connector in a second state. The controller is configured to change a connection status between the connector and the memory bus in response to the connector changing from one of the states to the other state. A central processing unit of the computer system is configured to use the memory bus to store data in the memory module.
Abstract:
A scheme may be used to remove or replace a processor in a multiprocessor computer without the need for turning the computer off to replace the processor. In this scheme, the bus to which the processor is coupled is identified so that all processors coupled to the bus may be placed in sleep mode. This act does not alter the normal operation of processors that may be coupled to another bus. Once the processors are in sleep mode, the processor may be removed or replaced. Afterward, all processors may be returned to normal operation.
Abstract:
A method and system of interchassis and intrachassis computer component command and control. The existing power rail is used for network connectivity for intrachassis command and control. An existing common power mains can be used for interchassis command and control. Further, a protocol, for example, the Consumer Electronic Bus (CEBus) protocol (or a CEBus protocol modified for the particular power rail) can be used to provide interchassis and intrachassis platform management functionality. This management functionality is similar to that provided by the proposed Intelligent Platform Management Interface (IPMI) specification. A chassis bridge controller is used to interface the intrachassis power rail command and control infrastructure to an exterior network. External systems (interchassis communications) can communicate to the bridge via the particular protocol over an existing common power mains as a secondary channel exterior network. However, the management functionality is implemented intrachassis, that is, it is applied to the internal components of the machine.
Abstract:
A programmable memory device including a register that stores a programmable mode select bit, a data input, a control input and decode circuitry that decodes the mode select bit to determine whether the memory device operates in either a check mode or a mask mode. The control input receives at least one control bit for each data byte received by the memory device during a write operation or cycle. The function of the control bit(s) depends upon the mode select bit. In a check mode of operation, each control bit functions as a parity/check bit for a corresponding data byte, where the memory device stores the check bit with its corresponding data byte during each write cycle. In the mask mode of operation, each control bit functions as a mask bit for a corresponding data byte, where the memory device selectively stores or masks the data byte depending upon the state of the corresponding mask bit.
Abstract:
In a computer system having a receiving computer and a source computer, a method for the remote flashing of the BIOS in the receiving computer including the steps of transferring the flash information from the source computer to the receiving computer, with the flash information including the flash code, the flash code instructions and an encrypted digital signature corresponding to the flash code. The receiving computer is operably placed in a secure mode. A hash value corresponding to the flash information is calculated, and the hash value from the flash information is decrypted. The flash code is validated by comparing the decrypted hash value of the flash information to the calculated hash value, and if validated, the BIOS if flashed with the new flash code.
Abstract:
In a microcomputer system implementing cache memory, a multiple-way cache is implemented in a single-bank memory. Instead of using chip output enables on a separate physical chip for each way of the multiple-way cache, an address line of a single bank of memory is used to select between ways. In this way, fewer parts can be used, and a single-bank memory can be used for a multiple-way cache.