Abstract:
A quantizer including passive summers, dynamic comparators and a clock generator. Each passive summer samples the input voltages and a reference voltage scaled by one of multiple graduated gains, and subtracts the scaled reference voltage from the sum of the input voltages. The graduated gains divide a predetermined voltage range into multiple voltage subranges, each between sequential pairs of the passive summers. The dynamic comparators compare each sequential pair of passive summer output voltages according to multiple splitting ratios and provide corresponding quantization bits. The dynamic comparators are activated in groups to reduce comparator kickback. Each dynamic comparator recharges the passive summer output voltages coupled to its inputs back to their initial voltage values to reduce kickback residual. The passive summers eliminate the need for a resistor string to generate the reference voltages. Staggered activation and comparator recharging replace preamplifiers used to suppress kickback and kickback residuals.
Abstract:
A method includes using an analog-to-digital converter (ADC) to provide an entropy signal at an output of the ADC. The method includes controlling a reference signal to the ADC to cause an internal noise level of the ADC to correspond to more than one least significant bit (LSB) of the ADC.
Abstract:
A capacitor sense system includes a pad for coupling to an external capacitor. A current digital to analog converter (DAC) supplies current to charge the external capacitor. A reference capacitor is charged by a current source. A first comparator compares a voltage across the external capacitor sensed at the pad to a reference voltage and generates a first comparison. A second comparator compares a voltage across a reference capacitor to the reference voltage and generates a second comparison. The stored first and second comparisons are used to control the current DAC. First and second AC coupling capacitors are coupled respectively between the pad and the first comparator and between the reference capacitor and the second comparator. Sensing at the pad allows more accuracy and the AC coupling capacitors provide better matching and allow for different DC biases to be set for the external capacitor and the first comparator.
Abstract:
A circuit may include a comparator having a first input, a second input, and an output. The circuit further may further include a successive approximation register (SAR) circuit coupled to the output of the comparator, the first input, and the second input. The SAR circuit may be configured to program one or more capacitors to selectively bias the first input to provide a single-ended measurement of a voltage at the second input.
Abstract:
An integrated circuit (IC) includes a plurality of pads adapted to communicate signals with a circuit external to the IC, and a first mixed signal interface block coupled to a first pad in the plurality of pads, where the first mixed signal interface block is adapted to receive a first trigger signal from the circuit external to the IC and to provide a second trigger signal. The IC further includes a second mixed signal interface block coupled to a second pad in the plurality of pads, where the second mixed signal interface block is adapted to receive and track a first input signal from the circuit external to the IC in a first mode of operation of the IC. The second mixed signal interface block is further adapted to generate, in response to the second trigger signal, a first output signal based on the first input signal and to provide the first output signal to a digital core of the IC in a second mode of operation of the IC, where the power consumption of the IC is lower in the first mode of operation than in the second mode of operation.
Abstract:
A capacitor sense system includes a pad for coupling to an external capacitor. A current digital to analog converter (DAC) supplies current to charge the external capacitor. A reference capacitor is charged by a current source. A first comparator compares a voltage across the external capacitor sensed at the pad to a reference voltage and generates a first comparison. A second comparator compares a voltage across a reference capacitor to the reference voltage and generates a second comparison. The stored first and second comparisons are used to control the current DAC. First and second AC coupling capacitors are coupled respectively between the pad and the first comparator and between the reference capacitor and the second comparator. Sensing at the pad allows more accuracy and the AC coupling capacitors provide better matching and allow for different DC biases to be set for the external capacitor and the first comparator.
Abstract:
An integrated circuit (IC) includes a plurality of pads adapted to send or receive signals, and a plurality of mixed signal interface blocks, each of which is coupled to a corresponding pad in the plurality of pads. Furthermore, each mixed signal interface block in the plurality of mixed signal interface blocks is adapted to be configurable to provide selected functionality independently of the other mixed signal interface blocks.
Abstract:
An integrated circuit (IC) includes a plurality of pads adapted to send or receive signals, and a plurality of mixed signal interface blocks, each of which is coupled to a corresponding pad in the plurality of pads. Furthermore, each mixed signal interface block in the plurality of mixed signal interface blocks is adapted to be configurable to provide selected functionality independently of the other mixed signal interface blocks.
Abstract:
An integrated circuit (IC) includes a plurality of pads adapted to send or receive signals, and a plurality of mixed signal interface blocks, each of which is coupled to a corresponding pad in the plurality of pads. Furthermore, each mixed signal interface block in the plurality of mixed signal interface blocks is adapted to be configurable to provide selected functionality independently of the other mixed signal interface blocks.
Abstract:
A method includes receiving a differential voltage signal at first and second inputs of a comparator and selectively providing the differential voltage signal to one of a first conversion path and a second conversion path of the comparator during a conversion phase to determine a digital value corresponding to the differential voltage signal. The first and second conversion paths including first and second pluralities of gain stages, respectively. The method further includes coupling the selected one of the first conversion path and the second conversion path to an output to provide the digital value.