Abstract:
Cartilage support implants for nasal valve support and delivery systems are described. The cartilage support implant can include one or more elongate bodies comprising one or more anchors. The cartilage support implant can be designed to be a permanent implant extending along the midline of a patient's nose, from the nasal bone to the lower lateral cartilage. Methods of placing the cartilage support implant and retrieving the cartilage support implant are also described.
Abstract:
Systems and methods of placing one or more suture loops into tissue, such as the base of the tongue, are described. A system can include a variable-thickness suspension line for suspending tissue, including a suture having a first thickness dimension; an elastomer surrounding a portion of the suture and defining a central segment of the suspension line having a second thickness dimension greater than the first thickness dimension, and at least one transition zone extending from the central segment of the suspension line to a lateral end of the suspension line, the transition zones having a thickness dimension that tapers from the second thickness dimension to the first thickness dimension.
Abstract:
Suture passer systems for tissue suspension and tissue compression are described. The system can include a shaft and a needle, wherein the needle is freely rotatable with respect to the shaft. The suture may include an overmolded segment. Methods of placing one or more implants, sutures, fastener, bone anchors and other devices are also described. The methods include moving tissue, including the superior pharyngeal constrictor muscle, palatopharyngeal arch, and palatoglossal arch. The methods include hyoid bone suspension.
Abstract:
Suture passer systems for tissue suspension and tissue compression are described. The system can include a shaft and a needle, wherein the needle is freely rotatable with respect to the shaft. The suture may include an overmolded segment. Methods of placing one or more implants, sutures, fastener, bone anchors and other devices are also described. The methods include moving tissue, including the superior pharyngeal constrictor muscle, palatopharyngeal arch, and palatoglossal arch. The methods include hyoid bone suspension.
Abstract:
Suture passer systems for tissue suspension and tissue compression, and more particularly for tongue suspension, are described. The system can include at least a first elongate tubular body or shaft, a needle having a lateral bias carried by the elongate body, and a retrieval element operably connected to the elongate tubular body. The needle can have a substantially straight configuration when located within the elongate tubular body, and be configured to exit an opening at or near a distal end of the elongate tubular body and assume a laterally biased or curved shape to form a path through tissue. The needle is configured to carry a suture. The retrieval element can be configured to retrieve the suture carried by the needle after the needle has formed a curved or otherwise angled path through tissue. The system can also include one or more bone anchors to secure the suture loops. Methods of placing one or more suture loops into tissue, such as the base of the tongue, are also described.
Abstract:
Suture passer systems for tissue suspension and tissue compression, and more particularly for palate or tongue suspension, are described. The system can include at least a first elongate tubular body or shaft, a needle having a lateral bias carried by the elongate body, and a retrieval element operably connected to the elongate tubular body. The needle can have a substantially straight configuration when located within the elongate tubular body, and be configured to exit an opening at or near a distal end of the elongate tubular body and assume a laterally biased or curved shape to form a path through tissue. The needle is configured to carry a suture. The retrieval element can be configured to retrieve the suture carried by the needle after the needle has formed a curved or otherwise angled path through tissue. The system can also include one or more bone anchors to secure the suture loops. Methods of placing one or more suture loops into tissue, such as the base of the palate or tongue, are also described.
Abstract:
Suture passer systems for tissue suspension and tissue compression are described. The system can include a shaft and a needle, wherein the needle is freely rotatable with respect to the shaft. The suture may include an overmolded segment. Methods of placing one or more implants, sutures, fastener, bone anchors and other devices are also described. The methods include moving tissue, including the superior pharyngeal constrictor muscle, palatopharyngeal arch, and palatoglossal arch. The methods include hyoid bone suspension.
Abstract:
Suture passer systems for tissue suspension and tissue compression are described. The system can include a shaft and a needle, wherein the needle is freely rotatable with respect to the shaft. The suture may include an overmolded segment. Methods of placing one or more implants, sutures, fastener, bone anchors and other devices are also described. The methods include moving tissue, including the superior pharyngeal constrictor muscle, palatopharyngeal arch, and palatoglossal arch. The methods include hyoid bone suspension.
Abstract:
Suture passer systems for tissue suspension and tissue compression, and more particularly for tongue suspension, are described. The system can include at least a first elongate tubular body or shaft, a needle having a lateral bias carried by the elongate body, and a retrieval element operably connected to the elongate tubular body. The needle can have a substantially straight configuration when located within the elongate tubular body, and be configured to exit an opening at or near a distal end of the elongate tubular body and assume a laterally biased or curved shape to form a path through tissue. The needle is configured to carry a suture. The retrieval element can be configured to retrieve the suture carried by the needle after the needle has formed a curved or otherwise angled path through tissue. The system can also include one or more bone anchors to secure the suture loops. Methods of placing one or more suture loops into tissue, such as the base of the tongue, are also described.
Abstract:
Suture passer systems for tissue suspension and tissue compression, and more particularly for tongue suspension, are described. The system can include at least a first elongate tubular body or shaft, a needle having a lateral bias carried by the elongate body, and a retrieval element operably connected to the elongate tubular body. The needle can have a substantially straight configuration when located within the elongate tubular body, and be configured to exit an opening at or near a distal end of the elongate tubular body and assume a laterally biased or curved shape to form a path through tissue. The needle is configured to carry a suture. The retrieval element can be configured to retrieve the suture carried by the needle after the needle has formed a curved or otherwise angled path through tissue. The system can also include one or more bone anchors to secure the suture loops. Methods of placing one or more suture loops into tissue, such as the base of the tongue, are also described.