摘要:
A computer-implemented method for image-guided delivery of a nanoparticle mixture to a target tumor located in a region of interest includes selecting a non-hypoxic delivery location within the region of interest for delivery of a non-bacteria-associated nanoparticle component included in the nanoparticle mixture and selecting a hypoxic delivery location within the region of interest for delivery of a bacteria-associated nanoparticle component included in the nanoparticle mixture. An image-guided delivery and monitoring process may then be performed. During this process intra-operative images of the region of interest are continually acquired and used to guide placement of a device into the non-hypoxic delivery location, monitor delivery of the non-bacteria-associated nanoparticle component included in the nanoparticle mixture at the non-hypoxic delivery location, guide placement of the device into the hypoxic delivery location, and monitor delivery of the bacteria-associated nanoparticle component included in the nanoparticle mixture at the hypoxic delivery location.
摘要:
A computer-implemented method for image-guided delivery of a nanoparticle mixture to a target tumor located in a region of interest includes selecting a non-hypoxic delivery location within the region of interest for delivery of a non-bacteria-associated nanoparticle component included in the nanoparticle mixture and selecting a hypoxic delivery location within the region of interest for delivery of a bacteria-associated nanoparticle component included in the nanoparticle mixture. An image-guided delivery and monitoring process may then be performed. During this process intra-operative images of the region of interest are continually acquired and used to guide placement of a device into the non-hypoxic delivery location, monitor delivery of the non-bacteria-associated nanoparticle component included in the nanoparticle mixture at the non-hypoxic delivery location, guide placement of the device into the hypoxic delivery location, and monitor delivery of the bacteria-associated nanoparticle component included in the nanoparticle mixture at the hypoxic delivery location.
摘要:
A method and system for automatic non-invasive estimation of shear modulus and viscosity of biological tissue from shear-wave imaging is disclosed. Shear-wave images are acquired to evaluate the mechanical properties of an organ of a patient. Shear-wave propagation in the tissue in the shear-wave images is simulated based on shear modulus and viscosity values for the tissue using a computational model of shear-wave propagation. The simulated shear-wave propagation is compared to observed shear-wave propagation in the shear-wave images of the tissue using a cost function. Patient-specific shear modulus and viscosity values for the tissue are estimated to optimize the cost function comparing the simulated shear-wave propagation to the observed shear-wave propagation.
摘要:
A computer-implemented method for deriving biopsy results in a non-invasive manner includes acquiring a plurality of training data items. Each training data item comprises non-invasive patient data and one or more biopsy derived scores associated with an individual. The method further includes extracting a plurality of features from the non-invasive patient data based on the one or more biopsy derived scores and training a predictive model to generate a predicted biopsy score based on the plurality of features and the one or more biopsy derived scores.
摘要:
Systems and methods for automatically navigating a catheter in a patient are provided. An image of a current view of a catheter in a patient is received. A set of actions of a robotic navigation system for navigating the catheter from the current view towards a target view is determined using a machine learning based network. The catheter is automatically navigated in the patient from the current view towards the target view using the robotic navigation system based on the set of actions.
摘要:
A computer-implemented method for decoding brain imaging data of individual subjects by using additional imaging data from other subjects includes receiving a plurality of functional Magnetic Resonance Imaging (fMRI) datasets corresponding to a plurality of subjects. Each fMRI dataset corresponds to a distinct subject and comprises brain activation patterns resulting from presentation of a plurality of stimuli to the distinct subject. A group dimensionality reduction (GDR) technique is applied to the example fMRI datasets to yield a low-dimensional space of response variables shared by the plurality of subjects. A model is trained to predict a set of target variables based on the low-dimensional space of response variables shared by all subjects, wherein the set of target variables comprise one or more characteristics of the plurality of stimuli.
摘要:
Systems and methods are provided for utilizing an MRI image and real-time an ultrasound images to guide and/or restrict the movement of an ultrasound probe in position for collecting a biopsy core. A real-time ultrasound image is acquired and fused with pre-operative imaging modalities, such as an MRI image, to provide a three-dimensional model of the prostate. A multi-link robotic arm is provided with an end-effector and an ultrasound probe mounted thereto. Sensor information is used to track the ultrasound probe position with respect to the 3D model. The robotic arm allows for the implementation of a virtual remote center of motion (VRCM) about the transrectal probe tip, an adjustable compliant mode for the physician triggered movement of probe, a restrictive trajectory of joints of the robotic arm and active locking for stationary imaging of the prostate.
摘要:
A method for subject-specific assessment of neurological disorders, the method includes receiving 3D image data representative of a subject's brain and identifying subject-specific anatomical structures in the 3D image data. A subject-specific model for electrical dynamics is created based on the 3D image data and the subject-specific anatomical structures and one or more functional indicators of neurological disorder are computed using the subject-specific model for electrical dynamics.
摘要:
Imaging from sequential scans is aligned based on patient information. A three-dimensional distribution of a patient-related object or objects, such as an outer surface of the patient or an organ in the patient, is stored with any results (e.g., images and/or measurements). Rather than the entire scan volume, the three-dimensional distributions from the different scans are used to align between the scans. The alignment allows diagnostically useful comparison between the scans, such as guiding an imaging technician to more rapidly determine the location of a same lesion for size comparison.
摘要:
A computer-implemented method for image-guided delivery of a nanoparticle mixture to a target tumor located in a region of interest includes selecting a non-hypoxic delivery location within the region of interest for delivery of a non-bacteria-associated nanoparticle component included in the nanoparticle mixture and selecting a hypoxic delivery location within the region of interest for delivery of a bacteria-associated nanoparticle component included in the nanoparticle mixture. An image-guided delivery and monitoring process may then be performed. During this process intra-operative images of the region of interest are continually acquired and used to guide placement of a device into the non-hypoxic delivery location, monitor delivery of the non-bacteria-associated nanoparticle component included in the nanoparticle mixture at the non-hypoxic delivery location, guide placement of the device into the hypoxic delivery location, and monitor delivery of the bacteria-associated nanoparticle component included in the nanoparticle mixture at the hypoxic delivery location.